(With James Honaker and Gary King)
We extend a unified and easy-to-use approach to measurement error and missing data. Blackwell, Honaker, and King (2015a) gives an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details; more sophisticated measurement error model specifications and estimation procedures; and analyses to assess the approach’s robustness to correlated measurement errors and to errors in categorical variables. These results support using the technique to reduce bias and increase efficiency in a wide variety of empirical research.