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e problem
• Let’s go back to a problem that we faced earlier, which is how to estimate causal effects with treatments

that vary over time. We could have a panel data situation, where we repeated measurements of the out-
come, or it could be a situation where we see a back and forth between the covariates and the treatment
and observed only one outcome.

• An example of the latter is negative advertising in campaigns: a campaign decides to go negative based
on past polling, but that negativity may have an impact on future polling. Of course, the outcome is
the ĕnal vote share and that is only observed at the end of the campaign.

• What do we have to sort out here? One is what types of effects we are interested in. Earlier we saw that
panel data regressionmodels can only identify the contemporaneous effect of the treatment and cannot
estimate the effect of treatment history. We’ll see how to estimate these treatment history effects today.

Notation

• Let’s let Ait = (Ai1, . . . , Ait) be the partial history of treatment up to time t. Deĕne Xit similarly.
Sometimes we’ll need to reference a speciĕc instance of these variables and we’ll use at and xt to do so.
We drop the t subscript to refer to the entire sequence: Ai = (Ai1, . . . , AiT ).

• Of course, we’ll need potential outcomes and these could be functions of the entire treatment history:
Y(a). Note that this notation implies that the regimes are static, so that decision to go negative at time
t is ĕxed by the treatment history and does not change based on covariates that are evolving over time.

• We can refer more generally to treatment regimes which are like strategies in game theory: they are
rules that dictate what actions/treatments units should take given a certain covariate history. We de-
ĕne these as g(xt), which takes values at. Clearly the “static” treatment histories above are treatment
regimes that are ĕxed across covariates.

• Obviously we might have different outcomes if we follow different treatment regimes, even if those
regimes are observationally equivalent for some people. us, we want to write potential outcomes for
the regimes: Yi(g).

• Treatment regimes are complicated and generally fairly hard to deal with, but the temptation is fairly
obvious: this are the kinds of effects people want to know about.

• In order to connect the potential outcomes and the observed data:





Yi = Yi(g) if Ai = g(Xi).

• is says that if a unit’s observed history is equal to the perscription of the treatment regime, then the
observed outcome equals the potential outcome under that regime.

g-computation
• We would like to estimate the effects of these regimes. Something like the follwing:

τ(g, g′) = E[Y (g)− Y (g′)]

• In medical studies, the goal is oen to estimate the “optimal” regime, which is the following:

argmax
g

E[Y (g)],

• Here, we are trying to ĕnd the regime thatmaximizes the outcome (assuming the outcome is beneĕcial).

• Either of these estimands requires us to estimate the mean of the potential outcome under a given
regime. How do we do that?

• In general, we are going to have to make an ignorability assumption, which we will call sequential
ignorability:

Y (g) ⊥⊥ At|Xt = xt, At−1 = g(xt−1)

• is assumption says that the potential outcome under some regime is independent of the treatment at
time t, conditional on the past values of the covariates and the treamtent regime. Again, this is simiar
to running a sequential experiment, where the randomization can depend on the past.

• We also have to assume positivity, which says that there are no deterministic treatments. at is, if
Pr[At−1 = at−1, Xt = xt] > 0, then

Pr[At = at|Xt = Xt, At−1 = at−1] > 0

• But how do we calculate the marginal mean of the potential outcomes? e same way we have before,
by marginalizing over the distribution of the covariates. Here it is more tricky because they vary over
time.

• Jamie Robins came up with what he calls the g-computational formula for these types of marginal
means. In general, it looks like this:

E[Y (g)] =

∫
xt

· · ·
∫
x0

E[Y |X = x,A = g(x)]
T∏

j=0

{
f(xj |Xj−1 = xj−1, Aj−1 = g(xj−1))dµ(xj)

}
• Notice that the right hand side here only has observeable quantities. To get this, we had to invoke

sequential ignorability. To see how this works, let’s work with a simpler example: two time periods,
with a binary covariate covariate between the two treatments, x.

• First note that, under consistency, we know that E[Y (g)|A = g(x)] = E[Y |A = g(x)].
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E[Y (g)] =E[Y (g)|A1 = g1(1)]

=E[Y (g)|X = 1, A1 = g1(1)]Pr[X = 1|A1 = g1(1)]

+ E[Y (g)|X = 0, A1 = g1(0)]Pr[X = 0|A1 = g1(0)]

=E[Y (g)|X = 1, A2 = g2(1), A1 = g1(1)]Pr[X = 1|A1 = g1(1)]

+ E[Y (g)|X = 0, A2 = g2(0), A1 = g1(0)]Pr[X = 0|A1 = g1(0)]

=E[Y |X = 1, A2 = g2(1), A1 = g1(1)]Pr[X = 1|A1 = g1(1)]

+ E[Y |X = 0, A2 = g2(0), A1 = g1(0)]Pr[X = 0|A1 = g1(0)]

• eĕrst equal sign comes from sequential ignorability (the ĕrst period is randomized), the second from
the law of iterated expectations, the third from sequential ignorability (conditional on ĕrst treatment
and the covariate, the second treatment is random), and the last from consistency.

• Note that we can’t just collapse the last line with the law of iterated expectations because the condition-
ing set for the outcome and the covariates are different. In the cross sectinal case this is true as well,
but typically we average across the marginal distribution of Xi. is is relatively easy because we can
usually just use the empirical distribution of the data. Here, though, we need the distribution of the
Xit conditional on the past, which means we will almost certainly need a model for the relationship
between the covariates and the past in addition to the model for the outcome. Ugh. Lots of modeling.

• Obviously, if the covariates are continuous, we are going to have to replace the sumover the distribution
of the covariates with an integral, which is what we see in the g-computational formula.

• One approach is to write down models for the covariates and the outcome, then construct a likelihood
and estimate the parameters of that likelihood and plug them into the g-formula. Robins has some
work that shows that this is problematic for most situations because there may be no set of parameters
for which if they are all zero, there is no effect. at is, it might be difficult to test the null hypothesis
of no effect of the treatment regime. It might be possible to estimate effects in this situation, but this is
relatively open question. ere are ways to reparameterize the distribution of the data tomake progress
and these models are usually called “Structural Nested” models.

Marginal structural models
• With g-computation, we had to write down models for the covariates in addition to the outcomes,

which is a large pain. Ideally, we would just be able to run a regression and read off the coefficients
in a causal way. is is what marginal structural models are and we can use a weighting approach to
estimate their parameters.

• A marginal structural model (MSM) is a model for the marginal mean of the potential outcome for a
given treatment history (we’re going to ignore treatment regimes for now). at is, it’s a model of the
form:

E[Y (a)] = h(a;β)

• Here h is a link function and β are a set of parameters. ere are a lot of modeling choices we might
make here. With a binary treatment variable, there are 2T possible treatment histories.
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• Let’s say we randomly assigned treatment histories. With the single-shot case, we could always non-
parametrically estimate E[Y (1)] and E[Y (0)] using simple means. Here, though, we are unlikely to
observe anyone following any particular history. us, simple means like these are not going to work.
We are going to need a model for the marginal potential outcome means.

• How should we model this? It could be that the number of treated periods is all that matters:

E[Y (a)] = β0 + β1
∑
t

= 1Tat

• Or it could be that the effect varies over time:

E[Y (a)] = β0 + β1
∑
t

= 1T/2at + β2

T∑
t=T/2+1

at

• In any case, we have to write a model down for the outcome here in terms of the treatment history.
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• But how do we actually estimate these models? Can we use regression or matching to estimate the
parameters? Unfortunately not. Imagine we estimate the following model:

E[Y |A,X]

• is model conditions on the these variables that are changing over time (we call them time-varying
confounders). Imagine we are in the two-period case and we estimate this:

E[Y |A1, A2, X] = α0 + α1A1 + α2A2 + α3X

• Here we conditioned on the covariate to remove omitted variable bias, but we have actually introduced
post-treatment bias. If the effect of negativity early in the race Ęows through polls and we condition on
polls, this is going to underestimate the effect of earlier negativity. From this point of view maybe we
omit polls and estimate this model:

E[Y |A1, A2] = α0 + α1A1 + α2A2

• Do these parameters equal the causal parameters β? No, because now there is confounding between
polling and going negative later in the race. us, polling is simultaneously post- and pre-treatment.
Controlling for it induces post-treatment bias and omitting induces confounding bias. What can we
do?

• We can instead use a weighting approach. Remember that regression and matching looked within
subsets of the covariates to ĕnd balance conditional on the covariates. Weighting instead reweighted
the data to remove those imbalances.

• How do we weight? Well, we know that with a single-shot treatment, we can weight by the inverse of
the propensity score:

Wi =
Ai

Pr[Ai = 1|Xi]
+

1−Ai

Pr[Ai = 1|Xi]
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• Here, the propensity scores are more complicated because the treatment is more complicated. We have
to weight by the probability of observing the entire history: Pr[A|X]:

Wit =
1

Pr(Ait|Ait−1, Xit)
.

• us, in this case, we need to each unit by the probability of receiving the treatmeht history they did,
conditional on the past. Let’s look at this in the two-period example. Let’s say we see a campaign that
is positive in the ĕrst period, then they are trailing, then they negative later in the race. e weights we
would calculate would be:

Wi =
1

Pr(pos1)
· 1

Pr(neg2|trail, pos1)
.

• Why does the weighting work? It balances the distribution of the data so that, in the reweighted data,
any arrows pointing from X to the treatments are removed. us, in the reweighted data, there is no
confounding, no backdoor paths, and no need to control for the covariates anymore.

• To see this, we can see how the weights affect the joint distribution of the observed data:

fW (Y,A,X) =
W (A,X) · f(Y,A,X)

ω

= f(Y |A,X)f(X)
W (A,X) · f(A|X)

ω
= f(Y |A)f(X) · fW (A)

• Here, ω is a normalizing constant. Basically, the weights balance the distribution of the the treatment
with respect to the covariates, but don’t change the relationship between the treatment and the outcome.
is is exactly what we want.
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