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Causal Mechanisms

Setup

• In the social sciences, we have theories and these theories tell us we should see certain causal effects, but
they also tell us how those causes should impact the outcomes. One theory might imply one “causal
path” and another theory might imply a completely different causal path. How do we adjudicate be-
tween these theories when they predict the same overall effect?

• Trying to investigate the various causal pathways is a branch of causal inference we call causal mecha-
nisms. A causal mechanism is the set of paths throughwhich the effect of the treatment on the outcome
Ęows.

• An example from Imai, Keele, andYamamoto () is that ofmedia framing. A classic study randomly
assigned participants to watch one of two news stories about a KKK rally: one that emphasized free
speech concerns and one that emphasized potential violence. e authors of the study thought that
the effect of the frame on tolerance for the KKK would be mediated by people’s views on intermediate
views on the importance of free speech and public order. at is, we might have something like this:
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• As usual, we have our treatment variable,Ai and our outcome variable Yi, but nowwe have an interme-
diate, post-treatment variable,Mi, which we call a mediator. Because this is a post-treatment variable,
it has potential responses, Mi(a), which is the value that the mediator takes when the treatment is a.
e outcome has joint potential outcomes: Yi(a,m). is is the value that the outcome takes when the
treatment has value a and the mediator takes the value m.

• We have tomake a consistency assumption, as usual, to connect the potential outcomes to the observed
outcomes. In this case, we have to make a consistency assumption for both the mediator and the out-
come. Speciĕcally, we will assume that that Mi = Mi(Ai) and that Yi = Yi(Ai,Mi(Ai)). us, the
observed mediator is the potential outcome for the mediator under the observed treatment. Note that
we can also write components of the potential outcomes: Yi(a) = Yi(a,Mi(a)). e potential out-
come under a is the outcome we would see under a and the value that the mediator would take under
a.
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Estimands

• ere are a couple of different quantities wemight want to estimate here. ere is the typical individual
causal effect, which we will call the total causal effect:

τi = Yi(1,Mi(1))− Yi(0,Mi(0))

• e total causal effect allows the effect of the treatment “propogate” through all causal pathways. us,
the mediator notation here is redundant.

• e DAG that we drew above, though, implies that we might be able to think about “direct” and “indi-
rect” effects of the treatment. “Indirect” here is the part of the effect of treatment that “Ęows through”
the mediator and the direct effect is the part of the effect that does not Ęow through the mediator.
ese deĕnitions are a little imprecise, so we will specify exactly what they mean.

• One estimand is the so-called “natural” or “pure” indirect effect:

δi(a) = Yi(a,Mi(1))− Yi(a,Mi(0))

• Note what is happening here. We are ĕxing the value of the treatment and seeing how the effect of Ai

on Mi changes the outcome. Note that one of the two quantities will not be observeable ever. Take
Yi(1,Mi(0)). is is the value Yi would take if the a unit were treated, but we set the mediator to
value it would take under control. Obviously, we can’t simultaneously see how someone responds to
treatment (for the outcome) and how they respond to control (for the mediator). is is different than
the “fundamental problem of causal inference,” where we only observe treatment or control for a given
unit, so we can only observe one of the two possible potential outcomes. Here, it is impossible (without
further, strong assumptions) to even observe these “counterfactual” potential outcomes. Rubin has
made strong claims that even investigating quantities like these is “unscientiĕc.”

• Also, note that we are also assuming that the way we affect the mediator does not matter. at is, if
Mi(1) = Mi(0) = m, then Yi(a,Mi(1)) = Yi(a,Mi(0)) = Yi(a,m). So it doesn’t matter if the
treatment sets the mediator or we set the mediator by intervention.

• Imai, Keele, and Yamamoto () focus on the average of these indirect effects, which they call the
average causal mediation effect (ACME):

δ̄(a) = E[δi(a)] = E[Yi(a,Mi(1))− Yi(a,Mi(0))]

• We can also deĕne the natural/pure direct effect (PDE) of the treatment:

ζi(a) = Yi(1,Mi(a))− Yi(0,Mi(a))

• us, the pure direct effect is the effect ofmoving from control to treatment while holding themediator
ĕxed at the value it would have under treatment status a.

• Why might we care about a quantity like this? e canonical example involves smoking as the treat-
ment and tar as a mediator, with lung cancer as an outcome. We know that smoking increases tar
consumption, Mi(1)−Mi(0) > 0, and that, overall, smoking increases the likelihood of lung cancer,
Yi(1,Mi(1)) − Yi(0,Mi(0)). But we may want to know about what would happen if we created a
cigarette without any tar in it.
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• Note that the total causal effect and the pure indirect and direct causal effects are related:

τi = δi(a) + ζi(1− a)

• us, we know that the ATE, τ̄ = E[Yi(1,Mi(1)) − Yi(0,Mi(0))], must be the sum of the average
indirect and direct effects:

τ̄ = δ̄(a) + ζ̄(1− a)

• e fact that we can decompose the total effect of treatment into the sum of a direct and indirect effect
if very important to social science researchers.

• One more estimand that we might be interested in is similar to our investigations into panel data and
ĕxed effects. at is the controlled direct effect (CDE):

Yi(1,m)− Yi(0,m)

• In general, this effect will be different than the PDE.

Identiĕcation

• We know what assumptions identify the ATE and how to estimate it with data, but can we estimate this
new quantity, the ACME? Yes, we can, but we need more assumptions than usual.

• Imai, Keele, and Yamamoto () use an assumption they call sequential ignorability, which is actu-
ally the same name as a different assumption in the context of time-varying treatments. e assumption
has two parts. First, the treatment must be ignorable with respect to the mediator and the outcome:

{Yi(a′,m),Mi(a)} ⊥⊥ Ai|Xi = x

• Here, this has to hold for alla, a′ and allm. is assumption could be satisĕedwith a randomly assigned
treatment.

• e next part of the assumption is that the mediator is ignorable with respect to the outcome, condi-
tional on the treatment:

Yi(a
′,m) ⊥⊥ Mi(a)|Ai = a,Xi = x

• Here, again, this holds for all values of a, a′. Note that we have to believe ignorability in certain cross-
world comparisons:

Yi(1,m) ⊥⊥ Mi(0)|Ai = 0, Xi = x

• is says that the mediator value under control is independent of what happens to the outcome under
treatment. is is a strange ignorability assumption and has a strange property: randomization of
the treatment and mediator does not imply this assumption holds. is is because we need to make
assumptions about the potential values of the mediator—how the mediator responds to the treatment.
If we set the mediator ourselves via randomization, we would lose that crucial information.

• Note also, that themediator ignorabilitymust hold only onpre-treatment covariates, not post-treatment
variables (that is, other potential mediators).
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• Under these two assumptions, we can write the ACME as a function of the observed data. It’s easy to
write this out when the mediator has J categories:

δ̄(a) =

J−1∑
m=0

E[Yi|Mi = m,Ai = a,Xi]

· {Pr[Mi = m|Ai = 1, Xi]− Pr[Mi = m|Ai = 0, Xi]}

• What does this look like? It’s the effect of the treatment within a level of the mediator multiplied by
the effect of the treatment on the probability of seeing that value of the mediator. It’s a little more clear
with a binary mediator:

δ̄(a) ={Pr[Mi = m|Ai = 1, Xi]− Pr[Mi = m|Ai = 0, Xi]}
· {E[Yi|Mi = 1, Ai = a,Xi]− E[Yi|Mi = 0, Ai = a,Xi]

• e ĕrst term here is the effect of the treatment on the mediator and the second term is the effect of the
mediator on the outcome, conditional on the treatment.

Linear Structural Equation Models

• Let’s say that we have a linear, structural model for all variables:

Mi(a) = α0 + α1a+ ηi

Yi(a,m) = β0 + β1a+ β2m+ εi

• It’s clear that we can write the total effect of the treatment in the following way:

Yi(1, Zi(1))− Yi(0, Zi(0)) =β0 + β1 + β2(α0 + α1 + ηi) + εi

− β0 − β2(α0 + ηi)− εi

=β1 + β2 · α1

• What about the indirect effect:

Yi(0, Zi(1))− Yi(0, Zi(0)) =β0 + β2(α0 + α1 + ηi) + εi

− β0 − β2(α0 + ηi)− εi

=β2 · α1

• If we think that we can identify these regressions, say because we randomly assigned the treatment
and the mediator, then we can estimate the total effect from a regression of Yi on Ai and Xi, then we
can estimate the direct effect (β1) from a regression of Yi on Ai, Mi, and Xi. en we can take the
difference between these coefficients and get the indirect effect of the treatment.

• Note, though, that there is an implicit assumption here of no interactions between the indirect effect
and the treatment status. at is,
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δ̄(1) = δ̄(0)

• We could incorporate an interaction into the model here to allow for the indirect effect to vary.

• Under sequential ignorability, we can estimate α1 from a regression of Mi on Ai and then estimate β2
from a regression of Yi onAi) andMi. en, our estimate of the ACME is simply the product of these
estimates: δ̂ = α̂1β̂2). e variance of this estimator can be written:

V [δ̂] = α2
1V [β̂2] + β2

2V [α̂1] + V [β̂2]V [α̂1]

Nonparametric Estimation

• e above estimators assume that treatment effects are constant across units and that everything is
linear. ese may not be valid assumptions. Instead, we may want to estimate the effects with non-
parametric estimators.

• If the number of categories in the mediator is small, then we can ĕll in the conditional expectations
above with their sample counterparts.

• If the number of categories is large, then we can use nonparametric regressions for the outcome and
the mediator. To get the standard errors, we can use bootstrapping.

• What if the mediator is continuous? ings get tricky. is is because we have to integrate over the
distribution of the mediators to get the ACME:

δ̄(a) =

∫ ∫
E[Yi|Mi = m,Ai = a,Xi = x]

{dFMi|Ti=1,Xi=x(m)− dFMi|Ti=0,Xi=x(m)}dFXi(x)

• Obviously, this is a much harder problem. In this case, we actually can use Monte Carlo simulation to
take the integral.
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