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Sharp RD

Setup

• e basic idea behind regression discontinuity designs is that we have a variable, Xi, that we call the
forcing variable, which determines (partly or wholly) the treatment assignment on either side of a ĕxed
threshold.

• is variable may or may not be related to the potential outcomes, but we assume that relationship is
smooth, so that changes in the outcome around the threshold can be interpretted as a causal effect.

• e classic example of this in political science is the Lee study of the incumbency effect. We want to
know if a party holding a House seat gives that party an advantage in the next election. But candidates
who win (the incumbent) tend to better than challengers from the same party. To overcome this, Lee
used an RDDwith the Democratic share of the two-party vote in the last election as the forcing variable
for Democratic incumbency in the current election. e key idea is that, in close elections, seats where
a Democratic candidate wonwill have similar characteristics to districts where a Democratic candidate
lost.

Design

• In a sharp RD design, the treatment assignment is a deterministic function of the forcing variable and
the threshold, c so that:

Ai = 1{Xi ≥ c}

• us, all units with the forcing variable above c receive treatment and those below c receive control.
In the incumbency example, we know that a district is only a “Democratic incumbent” district if the
Democratic share of the two-party vote is greater than ..

• Intuitively, we are interested in the discontinuity in the outcome at the discontinuity in the treatment
assignment. But note that overlap here is explicitly violated for the forcing variable. At the threshold,
c, we only see treated units and below the threshold c− ε, we only see control values. us, for a given
value of the forcing variables, we only observe treated or control units. us, we want to investigate the
behavior of the outcome around the threshold:

lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]
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• Under certain assumptions, this quantity identiĕes the ATE at the threshold:

τSRD = E[Yi(1)− Yi(0)|Xi = c]

• e basic idea behind sharp RD can be summarized in this plot

• Here, we have the forcing variable on each x axis, with the propensity score on the upper y axis and the
CEF of the potential outcomes distribution on the lower y-axis. e threshold here is . Each of the
dotted lines represents the CEF of the potential outcomes: µa(x) = E[Yi(a)|Xi = x] for a = 0, 1.
e solid line in the lower graph is the conditional expectation of the observed outcomes. Clearly the
discontinuity in the treatment assignment creates a strong discontinuity in the observed outcome.

Assumptions

• Note that ignorability here hold by design, because condition on the forcing variable, the treatment is
deteministic.

Yi(1), Yi(0) ⊥⊥ Ai|Xi

• Again, we can’t directly use this because we know that the usual posivity assumption is violated. Re-
member that positivity is an overlap condition:

0 < Pr[Ai = 1|Xi = x] < 1

• Here, obviously, the propensity score is only  or , depending on the value of the forcing variable.
us, we need to extrapolate from the treated to the control group and vice versa.
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• Extrapolation, even at short distances, requires a certain smoothness in the functions we are extraplat-
ing. us, we will make a continuity assumption: that E[Yi(1)|Xi = x] and E[Yi(0)|Xi = x] are
continuous in x. is continuity implies the following:

E[Yi(0)|Xi = c] = lim
x↑c

E[Yi(0)|Xi = x] = lim
x↑c

E[Yi(0)|Ai = 0, Xi = x] = lim
x↑c

E[Yi|Xi = x]

• e ĕrst equality here comes from continuity, the second from ignorability and the third from the sharp
design of the treatment assignment. Note that this is the same for the treated group:

E[Yi(1)|Xi = c] = lim
x↓c

E[Yi|Xi = x]

• us, under the ignorability assumption, the sharp RD assumption, and the continuity assumption, we
have:

τSRD = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]

Fuzzy RD

Setup

• With fuzzy RD, the treatment assignment is no longer a deterministic function of the forcing variable,
but there is still a discontinuity in the probability of treatment at the threshold:

lim
x↓c

Pr[Ai = 1|Xi = x] ̸= lim
x↑c

Pr[Ai = 1|Xi = x]

• In the sharp RD, this is also true, but it further requried the jump in probability to be from  to . Here,
we allow for small jumps. is design is oen useful when the a threshold encourages participation in
program, but does not actually force units to participate.

• Note that now the story looks slightly different:
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• One way to think about this set up is that the forcing variable is an instrument—it affects the distri-
bution of the treatment, but only affects the outcome through its effect on the treatment (at least in
neighborhood around the threshold). us, in this case, we have a potential outcome for the treatment
again: Ai(x), where this is deĕned as the potential treatment given a value of the forcing variable.

• We have to think a little bit about how to deĕne “compliers” and so on in this case. A complier would
be someone who takes the treatment when encouraged to do so (above the treshold) and takes control
when not encouraged (below the threshold). us, they would haveAi(c+ e) = 1 andAi(c− e) = 0.

• We have to make a monotonicity assumption here, just like with IV. Here is a version for our needs:
Ai(x) is non-decreasing in x at x = c. What does this say? It says that increasing the cutoff point never
makes someone more likely to be treated.

• In this setup we also have always-takers:

lim
x↓Xi

Ai(x) = 1 and lim
x↑Xi

Ai(x) = 1

• Of course we have never-takers:

lim
x↓Xi

Ai(x) = 0 and lim
x↑Xi

Ai(x) = 0

• We can deĕne an estimator that is in the spirit of IV:

τFRD =
limx↓cE[Yi|Xi = x]− limx↑cE[Yi|Xi = x]

limx↓cE[Ai|Xi = x]− limx↑cE[Ai|Xi = x]
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• We assume that τi = Yi(1) − Yi(0) and Ai(x) are independent of Xi near c, then we can write that
the estimator is equal to the effect at the threshold for compliers.

τFRD = lim
e↓0

E[τi|Ai(c+ e) > Ai(c− e), Xi = c]

• is follows from the same argument as last week, which has notes that:

E[Yi|Xi = c+ e] = E[Yi(0) + τiAi|Xi = c+ e] = E[Yi(0) + τiAi(c+ e)]

E[Yi|Xi = c+ e]− E[Yi|Xi = c− e] =E[τi(Ai(c+ e)−Ai(c− e))]

=E[τi(Ai(c+ e)−Ai(c− e))|Ai(c+ e) > Ai(c− e)]Pr[Ai(c+ e) > Ai(c− e)]

+ E[τi(Ai(c+ e)−Ai(c− e))|Ai(c+ e) < Ai(c− e)]Pr[Ai(c+ e) < Ai(c− e)]

=E[τi|Ai(c+ e) > Ai(c− e)]Pr[Ai(c+ e) > Ai(c− e)]

=E[τi|Ai(c+ e) > Ai(c− e)]E[Ai(c+ e)|Zi = c+ e]− E[Ai(c− e)|Xi = c− e]

=E[τi|Ai(c+ e) > Ai(c− e)]E[Ai|Zi = c+ e]− E[Ai|Xi = c− e]

• Note that the FRD estimator emcompasses the SRD estimator because with a sharp design:

lim
x↓c

E[Ai|Xi = x]− lim
x↑c

E[Ai|Xi = x] = 1

• A note on external validity: obsviously, FRD puts even more restrictions on the external validity of our
estimates because not only are we discussing a LATE, but also the effect is at the threshold. at might
give us pause about generalizing other populations for the both the SRD and FRD.

Estimation

Graphical approaches

• First, it is a good idea to simply investigate a plot of the outcome as a function of the forcing variable
to see if there is a visually obvious discontinuity in the outcome at the threshold. It is probably not
enough to simply look at one outcome, but many. is is to assess the plausibility of the design. Are
there other disconuitities that we can’t explain?

• Next, it’s a good idea to plot covariates by the forcing variable to see if these covariates also jump at the
discontinuity. If these are ĕxed before the assignment of the forcing variable, we might be worried that
there could be sorting around the discontinuity which could be related to the outcome.

• Lee paper for examples.

Local linear regression

• e main goal in RD is to estimate the limit of the functions in each of the estimands above. It turns
out that this is a hard problem because we want to estimate the regression at a single point and that
point is a boundary point. As a result, the usual kinds of nonparametric estimators perform poorly.
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• In general, we are going to have to choose some way of estimating the regression functions around the
cutpoint. Using the entire sample on either side will obviously lead to bias because those values that
are far from the cutpoint are clearly different than those nearer to the cutpoint. We might think, then
about restricting our estimation to units close to the threshold.

• Let’s deĕne µ1(x) = limz↓xE[Y(1)|Xi = z] and µ0(x) = limz↑xE[Y(0)|Xi = z]. For the SRD, we
have τSRD = µ1(x)− µ0(x).

• One nonparametric approach is to estimate nonparametricallyµ1(x)with values such thatXi ∈ [c, c+
h] and µ0(x)withXi ∈ [c−h, c). at is, we just compute means in those bins. is turns out to have
very large bias as the we increase the bandwidth.

• A useful semiparametric approach is to run a linear regression of Yi on Xi − c in the group Xi ∈
[c, c+ h] to estimate µ1(x) and the same regression for group with Xi ∈ [c− h, c).

• Obviously, we can estimate this with an interaction term between the treatment status and the forcing
variable.

• e choice of bandwidth is fairly important here and we want it to be smaller as N grows. In general,
we can use cross-validation techniques to choose the optimal bandwidth. Of course, we probably also
want to show that this choice of bandwidth is not crucial for results.
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