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Instrumental Variables and Structural Equation Modeling

Setup

• ebasic idea behind instrumental variables is thatwe have a treatmentwith unmeasured confounding,
but that we have another variable, called the instrument, that affects the treatment, but not the outcome.
With DAGs, it looks something like this:
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• is DAG implies that the instrument, Z , is actually randomly assigned.
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exclusion restriction

• is exclussion restriction means that there can be no common causses of the instrument and the
outcome and no direct or indirect effect of the instrument on the outcome that does not go through
the treatment.

• Another assumption implicit in this setup is that the instrument has a “ĕrst-stage” effect. at is, the
instrument actually causes changes in the treatment.

IV with constant effects

• Let’s write down a causal model for Yi with constant effects and an unmeasured confounder, Ui. Here
we assume that E[Aiηi] = 0, so if we measured Ui, then we would be able to estimate τ .

Yi = α+ τAi + U ′
iγ + ηi

• If we have an instrument, Zi, that satisĕes the exclusions restriction, then we know that cov(U ′
iγ +

ηi, Zi) = 0, because it must be independent of Ui and it has no correlation with ηi because neither
does the treatment. With this in hand, we can formulate an expression for the average treatment effect
here:
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τ =
Cov(Yi, Zi)

Cov(Ai, Zi)
=

Cov(Yi, Zi)/V [Zi]

Cov(Ai, Zi)/V [Zi]

• Here, we can see that the average treatment effect is the population regression coefficient of Yi on Zi

(called the “reduced form”) divided by the population regression coefficient of Ai on Zi (called the
“ĕrst stage”).

• With a binary instrument, there is a simply estimator based on this formulation called the Wald esti-
mator. It is easy to show that:

τ =
Cov(Yi, Zi)

Cov(Ai, Zi)
=

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Ai|Zi = 1]− E[Ai|Zi = 0]

• Intuitively, these are the effects of Zi on Yi divided by the effect of Zi on Ai)

Two-Stage Least Squares (SLS)

• Now, let’s write a model for the treatment and the instrument:

Yi = X ′
iβ + τAi + εi

Ai = X ′
iα+ γZi + νi

• We can plug the treatment equation into the outcome equation:

Yi = X ′
iβ + τ [X ′

iα+ γZi + νi] + εi

= X ′
iβ + τ [X ′

iα+ γZi] + [τνi + εi]

= X ′
iβ + τ [X ′

iα+ γZi] + ε∗i

• Here we assume that E[Ziνi] = 0, E[X ′
iνi] = 0, and E[X ′

iεi] = 0so that the ĕrst-stage parameters
are identiĕed. ere are two things to note here. First is that the value in the brackets in the last line is
the population ĕtted value of the treatment. Second, note that since Zi and Xi are uncorrelated with
νi and εi, then this ĕtted value is also independent of ε∗i .

• us, the population regression coefficient of a Yi on [X ′
iα+ γZi] is the average treatment effect, τ .

• In practice, we estimate the ĕrst stage from a sample and calculate ĕtted values:

Âi = X ′
iα̂+ γ̂Zi.

• Here, α̂ and γ̂ are estimates from OLS. en, we estimate a regression of Yi onXi and Âi. We plug this
into our equation for Yi and note that the error for Ai is now a residual:

Yi = X ′
iβ + τÂi + [εi + τ(Ai − Âi)]
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• is is valid because the ĕtted values are uncorrelated with εi by the exclusion restriction and uncorre-
lated with the ĕrst-stage residuals by construction. us, this regression will consistently estimate the
average treatment effect.

• Note that this isn’t how we actually estimate SLS because the standard errors are all wrong. is is
because the computer wants to calculate the standard errors based on ε∗i , but what we really want is the
standard errors based on εi.

Overidentiĕcation

• Of course, there’s nothing stopping us from including more instruments in the ĕrst stage equation. But
theymust be instruments: if we include a variable in the ĕrst stage, but not the second and it does affect
Yi, then we could get biased estimates.

• With more instruments than causal parameters of interest, we say that the model is overidentiĕed,
whereas with one instrument and one causal parameters, we say it is just-identiĕed. With more than
one instrument and constant effects, we can test for the plausibility of the exclussion restriction(s) using
an overidentiĕcation test.

• If we reject the null hypothesis in these overidentiĕcation tests, then it means that the exclusion restrci-
tions for our instruments are probably incorrect. Note that it won’t tell us which of them are incorrect,
just that at least one is.

• ese overidentiĕcation tests depend heavily on the constant effects assumption, which is why I’m not
going into detail about this. Once wemove away from constant effects, we no longer can generally pool
multiple instruments together in this way.

Instrumental Variables and Potential Outcomes

Setup

• e basic idea behind instrumental variable approaches is that we do not have ignorability for Ai, but
we do have a variable, Zi, that affects Ai, but only affects the outcome through Ai.

• Note that we allow the instrument, Zi to have an effect on Ai, so the treatment must have potential
outcomes, Ai(1) and Ai(0), with the usual consistency assumption: Ai = ZiAi(1) + (1− Zi)Ai(0).

• Of course, now the outcome can depend on both the treatment and the instrument, so we have Yi(a, z)
is the outcome if unit i had received treatment Ai = a and instrument value Zi = z.

• e effect of the treatment given the value of the instrument is Yi(1, Zi)− Yi(0, Zi).

Key assumptions

• Randomization: the ĕrst assumption is that the instrument is randomized, which is a strong assump-
tion that we can weaken to conditional ignorability later. In general, though, it’s oen difficult to know
why we would believe conditional ignorability for the instrument but not for the treatment. us, the
most plausible instruments are those that are truly randomized.
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[{Yi(a, z), ∀a, z}, Ai(1), Ai(0)] ⊥⊥ Zi

• Exclusion restriction: here we put it in a more concrete, explicitly causal form. e instrument has no
effect on the outcome, once we ĕx the value of the treatment. In some sense, the instrument would be
completely useless if we had simply randomly assigned the treatment. It has no interesting value to the
outcome separate from its effect on the treatment.

Yi(a, 1) = Yi(a, 0) for a = 0, 1

• Given this exclusion restriction, we know that the potential outcomes for each treatment status only
depend on the treatment, not the instrument:

Yi(1) ≡ Yi(1, 1) = Yi(1, 0)

Yi(0) ≡ Yi(0, 1) = Yi(0, 0)

• Rewriting the usual consistency assumption gives us a linear model with heterogeneous effects (we
have seen this before in randomized experiments):

Yi = Yi(0) + (Yi(1)− Yi(0))Ai

= α0 + τiAi + ηi

• Here, we have α0 = E[Yi(0)] and τi = Yi(1)− Yi(0).

• First stage: the next assumption is a little mundane, but turns out to be very important. e instrument
must have an effect on the treatment. Otherwise, what would we be doing? e instrument wouldn’t
affect anything. is might seem harmless, but it can wreak havoc on the efficiency of our causal
estimates.

E[Ai(1)−Ai(0)] ̸= 0

• Monotonicity. Lastly, we need to make another assumption about the relationship between the instru-
ment and the treatment. Namely, that the presence of the instrument never dissuades someone from
taking the treatment (or, alternatively, that the presence of the instrument never encourages someone
from taking the treatment).

Ai(1)−Ai(0) ≥ 0 or Ai(1)−Ai(0) ≤ 0

• is is sometimes called “no deĕers”. It turns out that with a binary treatment and a binary instrument,
we can group units into four categories:

Name Ai(1) Ai(0)

Always Takers  
Never Takers  
Compliers  
Deĕers  

• emonotonicity assumption remove the possibility of there being deĕers in the population. is gives
us a lot of information. It means that anyone with Ai = 1 when Zi = 0 must be an always-taker and
anyone withAi = 0whenZi = 1must be a never-taker. We’ll see how it factors into into identiĕcation
of effects.
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• It turns out that under these assumptions, we can show that the Wald estimator is equal what we call
Local average treatment effect (LATE) or the complier average treatment effect (CATE). is is average
effect among the compliers: those that take the treatment when encouraged to do so. at is, the LATE
theorem (Angrist and Pischke ), states that:

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Ai|Zi = 1]− E[Ai|Zi = 0]
= E[Yi(1)− Yi(0)|Ai(1) > Ai(0)]

• Under the exclusion restriction, we know thatE[Yi|Zi = 1] = E[Yi(0) + (Yi(1)− Yi(0))Ai|Zi = 1],
which is then equal to E[Yi(0) + (Yi(1)− Yi(0))Ai(1)] by randomization. e same applies to when
Zi = 0, so we have E[Yi|Zi = 0] = E[Yi(0) + (Yi(1)− Yi(0))Ai(0)]. us, we know that

E[Yi|Zi = 1]− E[Yi|Zi = 0] =E[(Yi(1)− Yi(0))(Ai(1)−Ai(0))]

=E[(Yi(1)− Yi(0))(Ai(1)−Ai(0))|Ai(1) > Ai(0)]Pr[Ai(1) > Ai(0)]

+ E[(Yi(1)− Yi(0))(Ai(1)−Ai(0))|Ai(1) < Ai(0)]Pr[Ai(1) < Ai(0)]

=E[Yi(1)− Yi(0)|Ai(1) > Ai(0)]Pr[Ai(1) > Ai(0)]

• e third equality comes from monotonicity: with this assumption, Ai(1) < Ai(0) never occurs. We
can use the same argument for the denominator:

E[Ai|Zi = 1]− E[Ai|Zi = 0] = E[Ai(1)−Ai(0)] = Pr[Ai(1) > Ai(0)]

• Dividing these two expressions through gives the LATE.

Is the LATE useful?

• A couple of things to note about what we have shown. Basically, once we allow for heterogeneous
effects, all we can estimate with IV is the effect of treatment among compliers. Note that this is a
unknown subset of the data. Among treated units with Zi = 1, we cannot distinguish them from the
always-takers and similarly for the control units with Zi = 0.

• For instance, we can show that, generally the ATT and the LATE differ:

E[Yi(1)− Yi(0)|Ai = 1] =E[Yi(1)− Yi(0)|Ai = 1, Ai(0) = 1]Pr[Ai(0) = 1|Ai = 1]

+ E[Yi(1)− Yi(0)|Ai(1) > Ai(0), Ai = 1]Pr[Ai(1) > Ai(0)|Ai = 1]

• Without further assumptions, this estimand is not equal to overall treatment effect or the treatment
effect on the treated. Furthermore, since the complier group depends on the instrument, an IV estimate
with one instrument will generally estimate a different quantity than an IV estimate of the same effect
with a different instrument.

• But it’s also true that this is the only causal effect of Ai on Yi that we can identify given the above
assumptions. is leads to the title of Imbens’s paper: better LATE than nothing.
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• In general, the best interpretation of the LATE estimate is that itmight haveweaker external validity. It’s
unclear if we were to intervene and actually randomly assignAi, we would get a similar result because
the LATEmight be very different than the ATE.is is the thrust of the paper byDeaton on the syllabus
in his skepticism.

• We can derive bounds for the average treatment effect in this setting, but those bounds tend to be quite
wide. In general, though, it is good to calculate such bounds to give a sense of what is happening in the
data.

Randomized trials with one-sided compliance

• It turns out that with additional assumptions, we can get the LATE to be equal to a parameter of interest:
the ATT. In general, this ismost plausible in a speciĕc setting: randomized control trials with one-sided
compliance.

• Note that we can think of a randomized experiment with issues of compliance as the type of situa-
tion that is ideal for IV. We have a randomized instrument (the treatment assignment) and we have
a non-randomized treatment affected by the instrument (the treatment actually taken). Here, we get
randomization by design,

• In this siutation, it might be plausible tomake an additional assumption of one-sided compliance. is
means that compliance problems can only come from one direction. at is, we might have Pr[Ai =
1|Zi = 0] = 0 because no one that was randomly assigned to control (Zi = 0) has access to the
treatment. Maybe this is because only those treated actually get pills or only they are invited to the job
training location.

• With this assumption, we know that there are no “always-takers” and since there are no deĕers, then
we know that anyone in the treated (Zi = 1) group that takes the treatment (Ai = 1) is a complier.
us, we know that:

E[Yi|Zi = 1]− E[Yi|Zi = 0] = E[Yi(0) + (Yi(1)− Yi(0))Ai|Zi = 1]− E[Yi(0)|Zi = 0]

= E[Yi(0)|Zi = 1] + E[(Yi(1)− Yi(0))Ai|Zi = 1]− E[Yi(0)|Zi = 0]

= E[Yi(0)] + E[(Yi(1)− Yi(0))Ai|Zi = 1]−E[Yi(0)]

= E[(Yi(1)− Yi(0))Ai|Zi = 1]

= E[Yi(1)− Yi(0)|Ai = 1, Zi = 1]Pr[Ai = 1|Zi = 1]

= E[Yi(1)− Yi(0)|Ai = 1]Pr[Ai = 1|Zi = 1]

• e ĕrst equality comes from the exclusion restriction (we used this before) and from the the fact that
under one-sided compliance,Zi = 0 implies thatAi = 0. e second equality comes from the linearity
of expectations. e third comes from the randomization of the instrument. e fourth is just algebra.
e ĕh comes from the fact that the treatment is binary. e last comes from the fact that Ai = 1
implies that Zi = 1 because only those that were randomized to take treatment can take treatment.
us, it’s clear that we have:

E[Yi|Zi = 1]− E[Yi|Zi = 0]

Pr[Ai = 1|Zi = 1]
= E[Yi(1)− Yi(0)|Ai = 1]
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• us, under the additional assumption of one-sided compliance, we can estimate the ATT. Again, the
reason is quite simple: before we showed that the ATT is a combination of the LATE and the effect for
the always-takers. If we remove the possibility of the always takers, then anyone who actually takes the
treatment is a complier. Not only this, but we can identify that group and learn about their character-
istics.

• It’s also easy to see that if we switch the direction of one-sided compliance, then we can esimate the
average treatment effect for the controls.

Size, characteristics of the compliers

• While we cannot identify who is a complier and who is not a complier in general, we can estimate the
size of the complier group:

Pr[Ai(1) > Ai(0)] = E[Ai(1)−Ai(0)] = E[Ai|Zi = 1]− E[Ai|Zi = 0]

• Angrist and Pischke describe ways to calculate the difference between the compliers and overall pop-
ulation in terms of binary covariates. Abadie () shows how to calculate the mean of any covariate
in the complier group.

Multiple instruments

• Again, since each instrument implies a different complier group, each instrument estimates a causal
effect for a different subset of the population. us, if we had two instrument, then there would be
two different LATEs, ρ1 and ρ2 for instruments Z1i and Z2i. We might try to use SLS to estimate an
overall effect with these instruments with following ĕrst stage:

Âi = π1Z1i + π2Z2i.

• In Angrist and Pischke, they show that the SLS estimator using these two instruments is a weighted
sum of the two component LATEs:

ρ2SLS = ψρ1 + (1− ψ)ρ2,

where the weights are:

ψ =
π1Cov(Ai, Z1i)

π1Cov(Ai, Z1i) + π2Cov(Ai, Z2i)

• us, the SLS estimate is a weighted average of causal effects for each instrument, where the weights
are related to the strenght of prediction for each of the ĕrst stage effects of the instruments.
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Covariates and heterogeneous effects

• It might be the case that the above assumptions only hold conditional on some covariates,Xi. at is,
instead of randomization, we might have conditional ignorability:

[{Yi(a, z), ∀a, z}, Ai(1), Ai(0)] ⊥⊥ Zi|Xi

• We would also have exclusion conditional on the covariates:

Pr[Yi(a, 0) = Yi(a, 1)|Xi] = 1 for a = 1, 0

• Under these assumptions, Angrist and Pischke show that if you fully saturate the ĕrst stage and the
second stage in the covariates, then SLS estimates a weighted average of the covariates-speciĕc LATEs
(very similar to regression).

• Abadie () shows how to estimate the overall LATE using aweighting approach based on a “propen-
sity score” for the instrument.
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