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Basic differences-in-differences model

Setup

• e basic idea behind a differences-in-differences model (shorthand: diff-in-diff, DID, or just DD) is
that some group or groups are treated at a given point in time and we can compare the change before
and aer this intervention against the same change in other, untreated group.

• It seems ideal that we have before and aer measurements for the treated group, but it might be the
case that the treatment time is correlated with secular trends in the outcome. e role of the control
group is to identify the secular trend in the outcome, so that we can separate secular trends from the
causal effect of the treatment.

• e classic example of this is the Card and Krueger estimates of the effect of a change in the minimum
wage in New Jersey on employment using the changes in employment in Pennsylvania, which did not
undergo a change in minimum wage laws. On the syllabus, we have the Lyall paper that looks at the
effect of artillery shelling on insurgent attacks, using villages that were not shelled as a control group.

Identiĕcation

• Again, let’s have Yit be the outcome under control for unit i in time period t. For now, we’ll have two
time periods, pre-treatment t = 0 and post-treatment t = 1. Of course, we have a treatment indicator:
Ait = 1 for those units who received the treatment in time t. A special note in this literature is that no
one is treated in the ĕrst period, so Ai0 = 0 for all i.

• e typical way we motivate the DID estimator is using a linear parametric model, similar to how we
justiĕed ĕxed-effects models last week. So, ĕrst we will ignore any potential outcomes and then come
to them later.

• e speciĕc model we will assume is this:

Yit = δt + τAit + αi + ηit

• Here we have a period effect, δt and a unit effect αi, and a transitory shock, ηit, which has mean zero.
Without further assumptions, τ is not identiĕed, because it might be correlated with the transitory
shocks. us, one identifying assumption, might be that the treatment is independent of the idiosyn-
cratic error:
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Pr[Ai1 = 1|ηi0, ηi1] = Pr[Ai1 = 1]

• is implies that functions of the errors are also independent of the treatment, so that ηi1 − ηi0 is
independent ofAit. ismeans that the any trends in the outcome are uncorrelated with the treatment.
is is important because it means that both the treatment and control group would have the same
trends in the outcome.

• With this assumption, we can rewrite the above model as the following:

Yit = µ+ δt+ γAi1 + τAit + εit

• e parameters are the following:

εit = αi − E[αi|Ai1] + ηit

δ = (δ1 − δ0)

µ = E[αi|Ai1 = 0] + δ0

γ = E[αi|Ai1 = 1]− E[αi|Ai1 = 0]

• e ĕrst of these is just a new error, the second is the time trend, the third is the initial mean for the
control group and the last is the difference between the treatment and control groups in terms of their
individual effects.

• Using the above assumption, we can show that the treatment is independent of the error in this model:

E[εit|Ai1, Ai0] = E[εit|Ai1]

= E[(αi − E[αi|Ai1] + ηit)|Ai1]

= E[αi|Ai1]− E[E[αi|Ai1]|Ai1] + E[ηit|Ai1]

= E[ηit|Ai1]

= E[ηit] = 0

• Note that we have this even though we have made no assumptions on the distribution of the unit-
speciĕc effects and their relation to the treatment.

• Now, we can investigate how two differences here. First, the time trend for the untreated:

E[Yi1|Ai1 = 0]− E[Yi0|Ai1 = 0] = δ

• And now the trend for the treated group:

E[Yi1|Ai1 = 1]−E[Yi0|Ai1 = 1] = δ + τ

• is motivates the differences-in-differences estimator as the difference between these two differences.
We can estimate each of these CEFs from the data and compute their sample versions to get an estimate
of τ .
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Estimation

• For the two period, binary treatment case, a regression of the outcome on time (pre-treatment, post-
treatment), treated group, and their interaction can estimate τ . As indicated by the above model, τ̂
would be the coefficient on the interaction between time and the treatment.

• Note that, for this, we only need to two cross-sections, one from before the treatment and one from
aer in the groups.

• If we have panel data, then we can estimate this a different, more direct way. Note that:

τ = E[Yi1 − Yi0|Ai1 = 1]− E[Yi1 − Yi0|Ai1 = 0]

• us, in the panel data case, we can estimate the effect by regressing the change for each unit, Yi1−Yi0,
on the treatment.

reats to identiĕcation

• Obviously, the treatment needs to be independent of the idiosyncratic shocks so that the variation of
the outcome is the same for the treated and control groups, but this might not be plausible.

• One example from economics is Ashenfelter’s dip, which is a empirical ĕnding that people who enroll
in job training programs see their earnings decline prior to that training. In the Lyall paper, it might be
the case that insurgent attacks might be falling in places where there is shelling because rebels attacked
in those areas and have moved on.

• us, the independence of the treatment and idiosyncratic shocks might only hold conditional on co-
variates.

Regression DD

• When the key assumption only holds conditional on covariates, then we have to control for those co-
variates in some way. e usual way to do this is with a regression DID, which includes covariates in a
linear, additive manner:

Yit = µ+X ′
iβt + δt+ γAi1 + τAit + εit

• If we have repeated observations, we can take the differences between t = 0 and t = 1:

Yi1 − Yi0 = δ +X ′
iβ + τ(Ai1 −Ai0) + (εi1 − εi0)

• Here, we have β = β1 − β0. Further note that because everyone is untreated in the ĕrst period,
Ai1 −Ai0 = Ai1.

• us, if we have repeated observations on the same units, we can simply regress the change in Yi on
the treatment and the covariates.

• You’ll note from our earlier work that a regression like this is going to depend on the constant effects
assumption (in addition to the linearity of the effect ofXi). We may want to generalize this.
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Serial correlation and placebo tests

• Bertrand, DuĘo, andMullainathan () shows thatmanyDID applications suffer from issues of serial
correlation in the dependent variable.

• Serial correlation doesn’t necessarily affect the consistency of the estimator, but rather the calculation
of the standard errors.

• ey use placebo tests to show that serial correlation can lead to a random, no-effect intervention being
signiĕcant  of the time at the  level.

• What is a placebo test? It’s a very useful way to assess if there is something questionable going on in a
DID application. In Bertrand, DuĘo, and Mullainathan (), they took data on female wages from
the Current Population Survey from  until . en, they randomly drew a year between 
and  and then randomly drew half of the states in the U.S. to receive this treatment.

• Obviously, since they created these interventions randomly, they have no effect. us, in this case, they
should only register as signiĕcant  of the time at the . level. What they found is that these placebo
interventions could be signiĕcant up to  of the time. Pretty terrible.

• Why do they ĕnd this? It’s the fact that DID time-series tend to be very serially correlated and thatmost
DID applications use long pre-treatment and post-treatment series. at is, we have been looking at a
two-period case, but you can imagine adding in many periods before and aer the treatment.

• How can we correct for this? Two ways: a block bootstrap (especially if there are many units). Or,
simply aggregate across the pre-intervention and across the post-intervention time periods.

Nonparametric identiĕcation
• e last section described how the DID model is identiĕed parametrically—using a model for the out-

come. Now, we want to relax that and see how we can identify effects without a model.

• Let Yit(a) be the potential outcome under treatment a at time t. Again, the individual causal effect is
just Yit(1)− Yit(0). Because no one is treated at time t = 0, we haveAi1 = Ai with Yi0(0) = Yi0 and
Yi1 = AiYi1(1) + (1−Ai)Yi1(0).

• We’ll focus on two estimands, the ATT, τATT = E[Yit(1)− Yit(0)|Ai = 1] and the conditional ATT:
τATT (x) = E[Yit(1)− Yit(0)|Xi = x,Ai = 1].

• Let’s make the crucial identifying assumption of a DID model:

E[Yi1(0)− Yi0(0)|Xi, Ai = 1] = E[Yi1(0)− Yi0(0)|Xi, Ai = 0]

• What does this assumption say? It says that the potential trend under control is the same for the control
and treated groups, conditional on covariates. Of, equivalently, the treated group would have seen a
similar trend to the control group if that had been control instead. is is oen called the “parallel
trends” assumption.

• Note that, if the two groups have the same mean potential outcome under control in the ĕrst period,
E[Yi0(0)|Xi, Ai = 1] = E[Yi0(0)|Xi, Ai = 0], then this assumption just becomes regular ignorabil-
ity: E[Yi1(1)|Xi, Ai = 1] = E[Yi1(1)|Xi, Ai = 0].
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• We can show that this is the key assumption for identifying the DID approach:

E[Yi1(1)− Yi1(0)|Xi, Ai = 1] =E[Yi1(1)− Yi0(0) + Yi0(0)− Yi1(0)|Xi, Ai = 1]

= (E[Yi1(1)|Xi, Ai = 1]− E[Yi0(0)|Xi, Ai = 1])

− (E[Yi1(0)− Yi0(0)|Xi, Ai = 1])

= (E[Yi1(1)|Xi, Ai = 1]− E[Yi0|Xi, Ai = 1])

− (E[Yi1(0)− Yi0(0)|Xi, Ai = 0])

= (E[Yi1|Xi, Ai = 1]− E[Yi0|Xi, Ai = 1])

− (E[Yi1(0)|Xi, Ai = 0]− E[Yi0(0)|Xi, Ai = 0])

= (E[Yi1|Xi, Ai = 1]− E[Yi0|Xi, Ai = 1])

− (E[Yi1|Xi, Ai = 0]− E[Yi0|Xi, Ai = 0])

• is is just the DID estimator that we saw above. us, we could estimate each of these values non-
parametrically, but we are going to run into the curse of dimensionality if Xi has many dimensions or
has continuous components (sound familiar?). Here we have four CEFs to estimate per level of Xi. If
we have repeated observations, we can take differences and estimate only two CEFs.

• Note what is powerful here: we didn’t have to make any kind of ignorability assumption, either condi-
tional on a unit-speciĕc effect or not. All we had to do was assume there are parallel trends. Of course
this assumption will be more plausible when the treated and control group are similar.

• Also, it’s important to note that the parallel trends assumption may not hold for transformations of the
data. So if it holds on the original data, it will not hold on the logged data and vice versa.

• In order to make progress with assuming a model for the relationship between Xi and Yit, we can
instead take a weighting approach, ĕrst described by Abadie ().

Semiparametric estimation with repeated outcomes

• With repeated outcomes, we can take a weighting approach to estimating the effect. is is similar to
the weighting approach taken with selection on the observables:

E[Yi1(1)− Yi1(0)|Xi, Ai = 1] = E

[
Ai(Yi1 − Yi0)

Pr[Ai = 1|Xi]
− (1−Ai)(Yi1 − Yi0)

1− Pr[Ai = 1|Xi]

∣∣∣Xi

]
• e tradeoff here is that we have to estimate the propensity score to estimate these weights for each

unit:

ρ0 =
Ai − Pr[Ai = 1|Xi]

Pr[Ai = 1|Xi](1− Pr[Ai = 1|Xi])

• We can see how this works with the following proof:

E[ρ0(Yi1 − Yi0)|Xi] =E[ρ0(Yi1 − Yi0)|Xi, Ai = 1]Pr[Ai = 1|Xi]

+ E[ρ0(Yi1 − Yi0)|Xi, Ai = 0]Pr[Ai = 0|Xi]

=E[Yi1 − Yi0|Xi, Ai = 1]−E[Yi1 − Yi0|Xi, Ai = 0]
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Robustness checks

Lags and Leads

• One thing we would like to do is perhaps check that the intervention really does occur before its effect.
We know that if Ait causes Yit, and not the other way around, then current and lagged values of Ait

should have an effect on Yit, but future values of Ait should not.

• us, one robustness check is to include lags and leads of the treatment in a regression DID and see
if the effects follow this pattern. If the leads of the treatment matter, this might be problematic for the
estimation. It might mean that the parallel trends assumption is violated.

• Also note that the lagged values might substantively interesting, but it isn’t clear that they have any
causal interpretation, as we saw last time with the ĕxed-effects models.

Time trends

• If we have more than two periods, we can add unit-speciĕc linear trends to the regression DID model
can help to assess whether or not the parallel trends assumption is problematic. at is, it allows each
state to have its own trend, which can be estimated from the pre-treatment data. us,
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