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Regression is probably the most commonly used statistical tool in the social sciences. It’s usually the
first technique you learn because it has nice properties and simple interpretations. Regression is one way
to estimate causal effects, but it comes with a good deal of baggage. Most methodological developments
in the social sciences have been reactions to linear regression models estimated by ordinary least squares
(OLS). Thus, we often come to regression with the feeling that its assumptions are too strong and that we
should model the full distribution of the data. And this can be a good approach! But the simple truth is
that regression has many good properties even when those burdensome assumptions do not hold (especially
in large samples). Freedman and many other statisticians have warned us that regression is not justified
by randomization, but others (Angrist and Pischke 2008) believe that if a causal effect is identified, then a
regression is not a bad way to approximately estimate that effect. Of course, the is as it always is: everyone is
right and it depends. Today we'll try to salvage regression from the ashes of 1980’s textbooks and see how it
handles or mishandles causal inference.

Agnostic views on regression

« When we usually learn regression, we state a series of assumptions such as linearity, fixed regressors,
Normal errors, homoskedastic error variance, and so on. We then use these assumptions to show that
the ordinary least squares estimator for a linear model is optimal in a certain sense. That is, we could
write down a model for our data:

[Yi| Xi] ~ N(XiB,07)

o This model assumes that the distribution of Y is normal with a mean that is a linear function of the
covariates, with a common variance, o2, across units. In this siutation, we can show that the maximum
likelihood estimator for 3 is the usual OLS estimator, Sors:
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« Not only is ors the MLE for this model, it is also the best linear unbiased estimator. These are great
properties, but they depend heavily on the distributional assumptions that we have made. If some of
these assumptions fail to hold, we lose these properties.
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« Instead of taking these assumptions as gospel and interpretting our regressions as such, we can alter-
natively take an “agnostic” view of regression. We need not take the assumptions of the linear model
seriously in order to use the regression machinery to estimate causal effects.



Conditional Expectation Function

« Instead of formulating a model for the distribution of Y;, we will attempt to estimate how the distri-
bution of Y; changes with a covariate X;. That is, we will use X; to predict the value of Y;. A useful
tool for this prediction is the conditional expectation function (CEF), which is the mean (or population
average) of Y; when X is held fixed. Obviously, the CEF is a function of X; and we write it as E[Y;| X]
and we can derive it from the conditional distribution of Y;:

ElYi|X; =] =) _tPr[Y; = t|X; = 2
t
« Remember that we can use the law of iterated expectations to recover the unconditional expectation of
Yi: BIE[Y;]X]].
o We can decompose Y; into the CEF and a residual that is mean independent of X;.
Y = E[Y;|Xi]+e Ele)|Xi]=0
o The CEF is the function of X; that best predicts (in a mean squared error sense) Y;.

o The Law of total variation:
V(Y;) = E[V(Y;| Xy)] + V(E[Y:] X))

Justifying linear regression

o Define linear regression:
B = argmin E[(Y; — X/b)?]
b

« The solution to this is the following:
B = E[X; X7 E[X;Y]]

o We can define the residuals e; = Y; — XZ( B, which are uncorrelated with the regressors. Again, no
assumptions here yet.

« A little regression anatomy that will be useful later when we focus on the coefficient for the treatment.
First, let X}; be the residual from a regression of X}; on all the other variables:

Cov(Yi, X1;)
By = 2o Ahi)
V(Xki)
« Justification 1: if the CEF is linear, the population regression function is it. That is, if E[Y;| X;] = X/b,
then b = 3.

o When would we expect the CEF to be linear? Two cases. One is if the data (the outcome and covariates)
are multivariate Normal. The other is if the linear regression is saturated. A saturated regression model
is one in which there is a parameter for each unique combination of the covariates. In this case, the
regression fits the CEF perfectly because the CEF is a linear function of the dummy categories.



« Imagine a regression model with two binary variables, X; and X5;. One could represent incumbent
status of a candidate and the the other could be the party of that candidate. Then, a saturated regression
model would be one that has each of these variables and their interaction. In this case, there are four
different values that the CEF can take:

EY;| X1 =0, X9; = 0]
E[Y;|X1; =1, X9; = 0]
E[Y;|X1; =0, X9 = 1]
ElY;| X1 =1, X9 =1]

o We can write the CEF as follows:
EY;| X145, Xoi) = a4+ X1 + v Xoi + 0(X 1 X2)

« There are no restrictions on this CEF. We can see this by noting that there are as many parameters as
combinations of the covariates:

E[Yi|X1;=0,X9 =0 =«

EYi| X1 =1,X0 =0 =a+f
ElYi|X1,=0,Xo; =1 =a+7y

ElYi| X1, =1, Xy =1]=a+B+7+0

« Thus, a linear regression with the same set of covariates will perfectly fit the CEF because each value
of the CEF is being estimated independently. A saturated model like this is the most flexible linear
regression model we can have. Dropping interaction terms or making linearity assumptions on multi-
category variables will cause the regression model to be no longer saturated.

« Also note that a saturated model perfectly fits the CEF without making any assumptions on the distri-
bution of Y;. Linearity of the CEF is not an assumption here, it’s a fact about saturated CEFs. Thus,
a saturated linear regression with a binary or non-negative outcome is perfectly valid: this regression
will accurately recover the parameters of the CEF for these variables.

o Justification 2: X[ is the best linear predictor (in a mean-squared error sense) of Y;.
o Justification 3: X/ provides the minimum mean squared error linear approxmiation to E[Y;|X;].

o Thus, even if the CEF is not linear, alinear regression provides the best linear approximation to that CEE.
This is crucial to an agonostic view of regression: we don't need to believe the assumptions (linearity)
in order to use regression as a good approximation to the CEE.

Asymptotic OLS inference
o YV, = X!+ [Y; — X[B] = X[ + e;. Note the residual e; is uncorrelated with X;:



[
= E[X,Yi] - B[X;X;0]
= E[X,Y;] — E[X;X/E[X; X' E[X,Y]]]
= E[X,Y;] — E[X, X]|E[X: X! 'E[X;Y]]
= E[XiYi] - E[X;Yi] =0

« We get this without making any assumptions on the linearity of E[Y;|X;]. We can still think of X/
as the best linear approximation to E[Y;|X;], no matter what the CEF looks like (that is, linear or
non-linear).

 With this representation in hand, we can write the OLS estimator as follows:
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« Using the standard tools of asymptopia (Slutsky’s theorem, central limit theorem), we know that v/ N (f—
B) coverges in distribution to a Normal distribution with mean vector o and covariance matrix, {2:

B=p+

Q= B[X; X[ B[X; X2 B[ X; X]]".

« We can replace e; with its emprical counterpart é; = Y; — X/ (3 and replace the population moments of
X; with their sample counterparts to estimate this covariance matrix. The square root of the diagonals
of this covariance matrix are the “robust” or Huber-White standard errors that Stata commonly report.

« Note that heteroskedaticity will definitely occur when E[Y;|X;] is not linear, but we use the linear
regression to approxmiate it. It will also crop up if the CEEF is linear, but the conditional variance is
different for different values of X;.

o Again, this is a large sample property of linear regression that does not rely on the linearity of the CEE.
These results do rely on (Y;, X;) being a simple random sample from a population and obviously they
are large sample properties.

Regression and causality

« When we look at a textbook, we often see regression defined without respect to causality. There is
talk of the § estimator being “biased;” but it isn’t always clear what the “correct” specification would
look like. There is an implicit assumption of causality, but no formal definitions. This can obscure
the identification of the causal effects of interest. Today, we'll see if we can estimate causal effects with
regression.

o Angrist and Pischke (2008) argue that a regression is causal when the CEF it approximates is causal.
Identification is king.

o We will show that under certain conditions, a regression of the outcome on the treatment and the
covariates can recover a causal parameter, but perhaps not the one in which we are interested.



Quick reminder: we have potential outcomes, Y;(1) and Y;(0), and two parameters, the ATE and ATT:
T = E[Yi(1) - Yi(0)],
Tarr = E[Yi(1) - Yi(0)|4i = 1].

We have shown in past weeks that these effects are identified when ignorability holds. Angrist and
Pischke (2008) call this the conditional independence assumption (CIA).

Linear constant effects model, binary treatment

Experiment: with a simple experiment, we can rewrite the consistency assumption to be a regression
formula:

Yi = AYi(1) + (1 — 4;)Y3(0)
=Y;(0) + (Yi(1) — Yi(0)) A
= 1"+ TA; + (Y;(0) — p°)
=ul +TA 4 V)

Note that if ignorability holds (as in an experiment) for Y;(0), then it will also hold for v?, since p:° is
constant. Thus, this satifies the usual assumptions for regression.

Let’s now say that ignorability holds only conditional the covariates, so Y;j(a) Ll A;| X;. We will assume
a linear model for the potential outcomes:

Yi(a) =a+T1a+mn;

Because we are assuming the effect of A is constant here, the 7); are the only source of individual varia-
tion and we have E[n;] = 0. We can use the consistency assumption to write this as a linear regression
model:

Yi=a+ 714, +n.
Now, we know that ignorability only holds on X;. Let’s assume that conditional expectation of 7; is
linear in the covariates: E[n;|X;] = X/~. With this, we can write n; = X[y + v, with E[;| X;] = 0.
This is an assumption: it maybe the case that the CEF of the error is not linear in the covariates. This
is one of those strong modeling assumptions that we wanted to avoid when we were using matching.

We'll look at non-parametric regression below that relax this assumption. For now, we can see that
(using ignorability and consistency in the first equality):

E[YZ’AZ,XZ] = E[Yz(a)\X,] =+ TAZ‘ + E[nz|Xz]
=a+TA; + Xy

Thus, a regression where A; and X; enter linearly will correctly estimate the average treatment effect,
T, since the residual of the linear regression is independent of the covariates:



Yi=a+71A; + Xy + v

« Note that nothing we have done changes if A; were continuous or ordinal with multiple categories. As
long as the potential outcomes follow a linear model with a constant effect, the above will hold.

o Let’s the review the assumptions that allow “off-the-shelf” regression to identify the ATE: ignorability,
constant effect of treatment, and linear separability in the covariates.

Heterogeneous effects, binary treatment

» Experiment:

Y = AYi(1) + (1 — 4;)Y;(0 )
=Y;(0) + (Yi(1) — Yi(0)) As
= 1+ (Yi(1) = Y3(0) 4; + o]
= p” + (Yi(1) = Yi(0)) 4 viAi+v3Ai+v?
= 1+ (' = Y3(0)) Ai + v Ay — 0] Ai + 07 Ay + 0]
=10+ (0 = i) Ai + o) + (o] — o)) A
=’ +74; +¢

Heterogeneous effects and matching estimators

o Let’s relax the assumption of constant effects. First, it’s useful to remember that the ATE is a weighted
sum of the conditional ATEs: 7(z) = E[Y;(1) — Y;(0)|X; = x]. We compute the overall ATE as 7 =
>, 7(x) PrlX; = z]. Note that, by ignorability, 7(z) = E[Y;(1)|X; = z, 4; = 1] — E[Y;(0)|.X; =

o There is a similar derviation for the ATT:

Tarr = E[Y;(1) = Y;(0)|A; = 1]
= E{E[Y;(1) - Y;(0)|X;, A; = 1]|A4; = 1}
= FE{E[Y;(1)|X;, A, = 1] — E[Y;:(0)| X, 4; = 1]|A; = 1}
= FE{E[Y;:(1)|X;, A, = 1] — E[Y;i(0)| X;, A; = 0]|]A; = 1}
Elr(z)|A; = 1]

= ZT(JE) Pr[X; = z|A4; = 1]

« Remember Bayes’s formula: Pr[X; = x|A4; = 1] Pr[4; = 1] = Pr[A4; = 1|X; = z| Pr[X; = z], so we
can rewrite the ATT as a propensity score-weighted function of the CATEs (with a normalizing factor):
2o T(@) - PrlA; = 1|1X; = 2] Pr[X; = x]
TATT =
Zm PI[AZ' = 1’XZ = .7,'] PI‘[Xi = (L‘]




Heterogeneous effects and regression

Now that we can see that both the ATE and ATT are weighted averages of the CATEs. We will now
show that the regression estimator with full saturation in X is also a weighted function of the CATE:s.

Suppose that we can write a dummy variable for each unique combination of X;: D,; = I(X; = x),
where x can be a vector. Thus, each combination of the covariates has its own binary variable. We can
then define the following regression:

Y, = ZDM'O@ + 1RA; + €.
x

Again, this regression is saturated in the covariates, which means that it is linear in the covariates by
construction. We are interested in seeing if 7r is equal to the ATE or the ATT. The fact that 7 does not
vary with the units is not a constant effects assumption, it’s just a parameter of this regression model.

How can we investigate Tr? Well, we can rely on the regression anatomy:

- COV(Y; s /L)

VA

Remember that A; is the residual from a regression of A; on the full set of dummies. Because that
regression is saturated (because the dummies saturate the covariates), we know that these resdiuals are:

We also know that a regression of Y; on the treatment and covariates is the same as a regression of the
E[Y;|X;, A;] on the treatment and covariates. Thus, in the above expression, we can replace Y; with
ElY;|X;, A;].
Cov(E[Yi|Xi, Ai], Ai — E[Ai| Xi])  E{E[Yi|X;, Ail(Ai — E[4i|Xi])}
TR = =
V(Ai — E[Ai] X)) E[(Ai — E[Ai| Xi])?]

Why stop here? We can simplify the CEF a bit more:

E[Yi| Xi, Ai] = E[A;Yi(1) 4 (1 — Ai)Y3(0)| X3, Ad]
= E[Yi(0)|X;, A; = 0] + A, E[Y;(1) — Y;(0)] X, Aj]

We can plug this into the numerator of 7 above. After a bit of simplification, we get the following:

E[r()(Ai = BIAXi])?] _ E[r(Xi)o% (X))

TR - BIAX)Y Bl

Here, 0124 is the variance of A; conditional on X;. Note that, since A; is binary, we know that:
0'124 = PI‘[AZ' = 1|X¢](1 - PI‘[AZ‘ = HXZ])
Thus, we can finally plug all of this in to find a representation of 75:

o > . 7(x) [Pr[4; = 1|X; = z](1 — Pr[A4; = 1|X; = z])] Pr[X; = 2]
>, [Pr[A; = 1|X; = (1 — Pr[4; = 1|X; = z])] Pr[X; = «]




o Thus, under the assumption of saturated in the covariates, the coefficient on the treatment in a linear
regression is a weighted average of the within-stratum effects. Remember that the ATT and ATE are
also weighted average of the within-stratum effects, but they weight by the size of those strata (overall
for the ATE or among the treated for the ATT). The within-stratum effects in regression are weighted
by the conditional variance of treatment in that stratum.

o Why does the OLS estimator weight by the conditional variance of the treatment? OLS is a minimum-
variance estimator. Thus, it gives more weight to strata with lower expected variance in their estimates.
That s, it gives higher weight to more precise within-strata estimates. When are these estimates going to
be more precise? When the treatment and control group are roughly the same size and so the variance
is maximized. This is because V (A|X = z) = Pr[A|X = z|(1 — Pr[A|X = z]). This is maximized
with PriA|X = 2] = 3.

o When does 7 = 7z? When 7(x) = 7 is constant across the strata of the covariates. In that case, we
recover the results from before. The other case is if the probability of treatment is constant across the
strata. In that case, we can pull out the Pr[A; = 1|X; = z] terms out of all the sums and they cancel,
leaving us simply weighting by the size of each stratum.

« Example: two strata, one with 7(1) = 1 and the other with 7(2) = —1. We have 75% of people in
stratum 1, so that the ATE is 0.5. We also have that the first group has 9o% treated units, while the
second stratum has 50% treated units. Then, the ATT is 0.685. The regression estimator will be 0.0384.

Obviously this will be the biggest issue when

OLS weight these weights intuitively gives weight zero to strata with only treated or control units, be-
cause those have o variance. But if the model isn’t completely saturated in X, this result doesn’t hold
and some extraplation will occur.

« A version of this result holds when when generalized A; to be ordinal or continuous. This case is more
difficult because it involves average derivatives as opposed to simple differences.

Non-parametric regression

« What do we do about the fact that the regression coefficient does not estimate the ATE or the ATT
under heterogeneous effects? Do we have to abandon regression? First, it’s important to note that the
bias of regression may be small in most situations, but it could be large, especially if we cannot saturate
the model in X;. Instead, we may want to turn to a different technique.

« Analternative regression estimator is sometimes called the imputation estimator and involves imputing
the values of Y;(1) and Y;(0) for each unit, using a regression, and then taking the average of the
differences between these imputations as the estimator for the ATE. Let /i,(x) be a consistent estimator
for po(z) = E[Y;(a)| X = x]. We could always run a saturated (in X;) linear regression in the treated
and control groups separately as this estimator.

1 . .
Timp — N Z:ul(Xl) - :u’o(Xl>



Thus, we use the regression(s) to predict values of the potential outcomes, then average across the
imputed individuals treatment effects. Because each of the regression estimators are consistent, then
the imputations estimator is consistent for the ATE as well.

Why don't people use this more? Well, it isn't as easy to calculate as the dead-easy regression coef-
ficients. Furthermore, the standard errors are not straightforward and usually require bootstrapping.
Plus, under constant effects, this estimator is identical to the regression estimator.

In general, we can run separate regressions: p,(z) = X/f,, which is identical to running regression
with a full set of interaction between the treamtent and the covariates.

The recent trend in the literature is to estimate y,(x) using non-parametric methods such as kernel
regression. See Imbens (2004) for more about this.

Limited dependent variables

Traditionally, we shy away from regression with limited dependent variables. We look to logits, probit,
Tobits, MLE, etc, etc. We might wonder if this is necessary? Economists often just use OLS. Why the
difference in opinion?

Experiments

Note that, with a binary randomized treatment, we can just do a difference in means (aka regression)
without imposing any assumptions on the distribution of Y;. This is because a model like that is satu-
rated.

Running a probit model in this case requires us to make a non-linear transformation of the model
parameters to get back to effects on the same scale as the dependent variable. The validity of this trans-
formation depends on the model we choose and may depend crucially on constant effects assumptions.

Even if there are covariates, if they are binary, we can estimate the CATE, 7(z) and then average those
over the distribution of the covariates. Because each within-strata estimate is linear, the weighted av-
erage is also linear.

Conditioning on the outcome being positive (COP) introduces post-treatment bias.

There being a cutoff of zero, say in payments, this might substantively interesting, not a censoring
problem.

Covariates and nonlinearity

When we add covariates to a regression, linearity becomes an assumption. Angrist and Pischke (2008)
give evidence that the difference between marginal effects calculated from non-linear models and OLS
coefficients will roughly be the same, so we shouldn’t worry too much about this.

This isn't necessarily true, though, and things can go wrong in small samples or the covariates have a
strange distribution. In this case, we might want to use the usual non-linear models. But it’s important
to calculate causal quantities such as the first difference or the average derivative, since these are on the



scale of the dependent variable. The coefficients on latent variables are non-causal and, in general, not
that interesting.

« Use censoring models when there is true censoring, such as top-coding of income, not just a substantive
zeroes.
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