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Post-treatment bias
• You may have noticed from most of the readings that conditioning on post-treatment variables has

been verboten when attempting to identify treatment effects. ere are intuitive reasons why this is
the case—part of the effect of A on Y might “Ęow through” a post-treatment variable Z—but these
intuitions can be very misleading.

• One intuition that is correct is that conditioning on a post-treatment variable implicitly attempts to
estimate a treatment effect among a group who post-treatment variable is unaffected by the treatment.
Obviously, this group might be very different than the overall population and we cannot in general
average this problem away.

• To get amore precise view on the post-treatment bias problem, we’ll follow the approach of Rosenbaum
(), which is one of the canonical treatments (!) of post-treatment bias.

Decomposition of post-treatment bias

• Let (Zi(1), Zi(0)) be the potential outcomes for the post-treatment variable, with Zi = AiZi(1) +
(1−Ai)Zi(0). If we were interested in the effect of a campaign strategy on the campaign outcome, this
might be a poll taken during the middle of the campaign. ese potential outcomes are the outcomes
that would occur if the candidate went negative (Ai = 1) or stayed positive (Ai = 0).

• Again, let’s assume ignorability conditional on the covariates: (Y (1), Y (0)) ⊥⊥ |X . us, in this case
the usual estimator for the conditional average treatment effect is unbiased (Nx is the number of units
with Xi = x):

τ̂(x) =
1

Nx

∑
{i:Xi=x}

E[Yi|Ai = 1, Xi = x]− E[Yi|Ai = 0, Xi = x]

• And we can combine these estimates to get an estimate of the average treatment effect: τ̂ = E[τ̂(X)].

• Instead of using those estimators, let’s see what happens when we control for the post-treatment vari-
able:
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∆(x, z) = E[Y |A = 1, Z = z,X = x]− E[Y |A = 0, Z = z,X = x]

= E[Y (1)|A = 1, Z = z,X = x]− E[Y (0)|A = 0, Z = z,X = x] (Consistency for Y )
= E[Y (1)|A = 1, Z(1) = z,X = x]− E[Y (0)|A = 0, Z(0) = z,X = x] (Consistency for Z)

• en, we can average these over the distribution of (X,Z): ∆ = E[∆(X,Z)]. Now, we want to
compare this estimator ∆ to the average treatment effect τ . One way to investigate the bias of the
estimator is to look at a different quantity, what Rosenbaum () calls the net treatment difference
ν(x, z):

ν(x, z) = E[Y (1)|Z(1) = z,X = x]− E[Y (0)|Z(0) = z,X = x]

• Again, we’ll take the average over (X,Z): ν = E[ν(X,Z)]. What is this quantity? If ν(x, z) = 0 and
τ > 0, then the effect of A on Y Ęows entirely through Z . is is because there is no effect of A when
we ĕx the value of Z to z under A = 1 or A = 0. is is simiar to estimating the effect of A when we
remove the arrow from A to Z :

..A.

Z

. Y

• In the causal mechanisms literature, this is called the controlled direct effect, controlled because we
ĕx the post-treatment variable at a given value, rather than let it take the value it would take under
treatment or control.

• e bias of ∆ can be written: ∆ − τ = (∆ − ν) + (ν − τ). You can think of this as highlighting the
parts of the unbiased proof that are incomplete. In order to prove unbiasedness we need to show that
∆ = ν and then that ν = τ , but our current set of assumptions don’t allow us to do that. Why?

• (∆ − ν) measures our inability to estimate the controlled direct effect. It might be the case that
∆(x, z) ̸= ν(x, z) because Z is a collider. If we condition on Z , it opens a backdoor path between A
and Y :

..A.

U

.

Z

. Y

• In this case, conditioning on Z opens the backdoor path from A ← U → Z ← Y . us, (∆ − ν)
represents the bias due to unmeasured confounding between A and Z .

• e second term, (ν−τ), represents the difference between the controlled direct effect and the average
treatment effect. Somewhat obviously, this will be non-zero if A affects Z and Z affects Y . at is, τ
is overall effect of A on Y , which includes the path from A → Z → Y . If we just look at the direct
effect, this will ignore the indirect effect and will only equal the overall effect if that indirect effect is .

• Note about indirect/direct effects: while we discussing the controlled direct effect somewhat loosely
here, you should be very, very cautious when attempting to make inferences about direct and indi-
rect effects. ings become complicated quickly. We’ll talk more about this when we get to causal
mechanisms.
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Conditions that eliminate post-treatment bias

• We know that the bias comes from (∆−ν) and (ν−τ), so we can characterize assumptions that would
make these two zero and give us unbiased estimates of τ .

• Strong ingorability for post-treatment variable: (Y (0), Z(0), Y (1), Z(0)) ⊥⊥ A|X . is extends
ignorability to the post-treatment variable and gives us ∆ = ν. Why? Because it eliminates the
possibility that Z ’s role as a collider opens the backdoor path between A and Y . is is because
(Y (0), Z(0), Y (1), Z(0)) ⊥⊥ A|X implies Y (0) ⊥⊥ A|X,Z(0), so that E[Y (0)|A = 0, Z(0) =
z,X = x] = E[Y (0)|Z(0) = z,X = x].

..A.

X

.

Z

. Y

• isDAG shows the relationships when this condition holds. Conditional onX , there are no backdoor
paths between A and Y or Z . is means that once we condition on X , it doesn’t matter whether or
not we condition onZ . e path fromA← X → Z → Y is blocked by controlling forX , whether or
not we condition on Z . But this isn’t enough to prove ∆ = τ because we could have a situation which
reverses the arrow between Z and Y :

..A.

X

.

Z

. Y

• No effect of treatment on the post-treatment variable: Z(1) = Z(0) = Z for all units. Under this
condition, we have ν = τ because the effect of A cannot go through Z since it doesn’t affect Z . Tech-
nically,

ν(x, z) = E[Y (1)|Z(1) = z,X = x]− E[Y (0)|Z(0) = z,X = x] = E[Y (1)− Y (0)|Z = z,X = x].

• So that when we take the average over (X,Z), we get ν = τ . In this case the above DAGs would be:

..A.

X

.

Z

. Y. A.

X
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Z
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• You can see that once we apply these two assumptions, the decision to condition or not condition on
Z no longer matters. In essence, we are assuming Z back to a pre-treatment variable.

• But, what does this buy us? Nothing, really, because (Y (0), Z(0), Y (1), Z(0)) ⊥⊥ A|X implies
(Y (0), Y (1)) ⊥⊥ A|X , so that we can estimate τ using the standard estimator τ̂ . Controlling for
Z does nothing.
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Propensity score weighting
• Remember again that therewere three approaches to estimating causal effects under ignorability: match-

ing, weighting, and regression. is section covers the weighting approach which is closely linked to
subclassiĕcation and matching on the propensity score.

• e intuition behind the weighting approach comes from a sampling mindset: each of the treated
and control samples are unrepresentative of the overall population, which leads to imbalance in the
covariates and the confounding. What do we usually do with unrepresentative samples? Reweight
them to be more representative.

• How should we reweight the data from an observational study, though? It’s not immediately clear, but
we can get some insight from the distribution of the data:

p(Y,A,X) = p(Y |A,X)p(A|X)p(X)

• We know that a simple difference in means will not work here because there is dependence between
A and X , captured in the term p(A|X). If only A and X were independent, then we could just take a
simple difference in means.

• eabove factorizationhints at aweighting scheme: if wewere to reweight the data byWi = 1/p(Ai|Xi),
then we would break the relationship betweenA andX . Note that this is the inverse of the probability
of receiving the observed treatment conditional on the observed covariates. us, the denominator is
simply the probability of seeing a unit like this, conditional on its covariates.

• Let’s look at a situationwith one binary covariate. erewewould have fourweights: Wax = 1/Pr[A =
a|X = x] for each of the four combinations of treatment and covariate. us, for the group observed
to have (A,X) = (1, 1).

Pr
W
[A = 1|X = 1] =

W11 · Pr[A = 1|X = 1]

ω

=

1
Pr[A=1|X=1] · Pr[A = 1|X = 1]

1
Pr[A=1|X=1] · Pr[A = 1|X = 1] + 1

Pr[A=0|X=1] · Pr[A = 0|X = 1]

=
1

2
.

• e ĕrst equality simply relates the conditional distribution in the

weighted data relates to the conditional distribution in the original data, where W11 is the weight associated
with the observations that follow (A,X) = (1, 1) andω is a normalizing factor tomake the probabilities sum
to one. e second equality simply ĕlls in the deĕnition of the weights: one over the probability of observing
A = 1 conditional on X = 1. It also uses the fact that ω = E[W ]. If we do the same analysis for X = 0, we
get end up with the same distribution:
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Pr
W
[A = 1|X = 0] =

W10 · Pr[A = 1|X = 0]

ω
()

=

1
Pr[A=1|X=0] · Pr[A = 1|X = 0]

1
Pr[A=1|X=0] · Pr[A = 1|X = 0] + 1

Pr[A=0|X=0] · Pr[A = 0|X = 0]
()

=
1

2
. ()

• us, we have shown that in the reweighted data, p(A|X = 1) = p(A|X = 0) = p(A). at is, in the
reweighted data, the treatment and the covariate are independent.

• We can show that the weighted mean of the treated units is the same as the mean of the potential
outcome under treatment:

E

[
AY

e(X)

]
= E

[
AY (1)

e(X)

]
(Consistency)

= E

[
E

[
AY (1)

e(X)

∣∣∣X]]
(Law of Iterated Expectations)

= E

[
E[A|X]E[Y (1)|X]

e(X)

]
(Conditional Ignorability)

= E

[
e(X)E[Y (1)|X]

e(X)

]
(Propensity Score Deĕnition)

= E[Y (1)] (Law of iterated Expectations)

• e same logic would give us the mean potential outcomes under control:

E

[
(1−A)Y

1− e(X)

]
= E[Y (0)]

• ese two facts provide an estimator for the average treatment effect:

τ̂ =
1

N

N∑
i=1

(
AiYi
e(Xi)

− (1−Ai)Yi
1− e(Xi)

)
• e above two results give us that this esimator is unbiased.

Estimation of the propensity score

• Obviously, in order to estimate τ̂ we need to either know or estimate the propensity score, e(Xi). How
do we do that? Well, we already have done that to either subclassify on the propensity score or match
on the propensity score. In some sense, it’s old hat. We can simply perform a logistic regression of A
on X . If X is discrete with a small number of categories, then we can even estimate the within-strata
propensity scores (Nxt/Nx) and this will be a good, non-parametric estimate of the propensity score
in each stratum of the data.
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• But what happens when X has many categories? en, for some x, there will only be treatment or
control units and ê(x) = 0 or ê(x) = 1. What does this mean for our weights? Well, that means that
1

ê(x) = 1
0 = ∞. When there is some value of x with no overlap between treated and control, we have

a violation of positivity (which, remember, is 0 < p(A = 1|X) < 1). ere are two types of positivity
violations: structural and random. Structural positivity violations are due to logical requirements: if
we wanted to know the effect of getting tenure on your lifetime happiness, it’s clear that people not in
academia would be unable to receive the treatment because they cannot get tenure. No matter how
many observations we have, we’ll never see a non-academic with tenure. We can’t get around this: we
can only make inferences on susbets of the data where structural positivity holds.

• Randompositivity violations, on the other hand, are due to the fact that we have a ĕnite sample size and
so we might, by chance, get a sample that has no treated or no control in some stratum of the data. In
these cases, our non-parametric estimates of the propensity score give us inĕniteweights, aswe saw. But
we can also use models to borrow information from “nearby” strata to estimate the propensity score.
is essentially entails using a model to estimate the propensity score, perhaps a logistic regression or
a more complicated method, such as boosted regression, kernel estimation, or a series logit estimator.

• Entropy balancing: Hainmueller () develops an approach that produces weights that balance the
data directly. He observes that the covariates should be balanced in the reweighted data. Instead of
modeling the propensity score, then, he chooses to ĕnd the weights that maximize the balance of the
covariates.

Stablized weights

• Even if positivity isn’t violated propensity scores that are close to  or  lead to very large weights,
which can lead to larger-than-necessary standard errors. ere are a couple of approaches to handle
this problem in data analysis.

• One is trimming the weights. at is, pick some value ε (say, .) and for any units with estimates
ê(Xi) < ε or 1 − ê(Xi) < ε, we set their weight to Wi =

1
ε . is is obviously equivalent to setting a

maximum value of the weights. We can also set a minimum value.

• Another way to solve the extreme weight problem is to use stabilized weights instead of the usual
weights. Note that in our proofs above, our weights were 1/Pr[A|X]. It turns out that we can replace
the  with a function of A and still get the balancing property. is gives us the ability to reduce the
variance of our estimates by using stablized weights instead of the usual weights: SWax = Pr[A =
a]/Pr[A = a|X = x].

Boostrapping to get the SEs

• In order to incorporate the uncertainty to due the weighting model, we need to bootstrap the whole
estimation procedure. at is, repeat the following steps some large (roughtly ,) times:

. Draw a sample of the data with replacement, call this, Sb.
. Estimate the propensity scores in this sample, êb and create weights, Wb.
. Use the weights to get an estimate of the average treatment effect, τb in the sample Sb.
. Repeat.
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• e distribution of the estimates, τ̂b, will give us the bootstrapped standard errors and conĕdence in-
tervals.
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