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Confounding

Observational studies versus experiments

« What is an observational study? It is a study where the researcher does not control the treatment
assignment. Because the analyst does not control the assignment he or she cannot guarantee that the
treatment and control groups are comparable.

« In the previous weeks, randomization gave us a crucial result: that the treatment and control groups
were comparable on any pre-treatment covariate so that any remaining differences were due to causal
effects. Once we move to observational studies, this no longer holds by default. We are going to have
to work harder to justify our analyses with observational studies.

« Rubin (2008) argues that we should try to “design” our observational studies in the same way we might
analyze an experiment where we've lost the randomization procedure. That is, we should ignore the
outcomes, try to estimate the randomization procedure (of the ideal experiment we think the data
comes from).

« Remember in the DAGs, randomization implies no arrows pointing into the treatment or we know
exactly which arrows because we have done a block-randomized experiment.

Backdoor paths and blocking paths

« What is a backdoor path? A backdoor path is a non-causal path from A to Y. This is a path that would
remain if we were to remove any arrows pointing out of A (these are the potentially causal paths from
A, sometimes called frontdoor paths). They are “backdoor” paths because they flow backwards out of
A: all of these paths point into A.

« Backdoor paths between A and Y generally indicate common causes of A and Y (though not always,
see M-bias below). The simplest possible backdoor path is the common confounding situation:
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o Here there is a backdoor path A <— X — Y, where X is a common cause for the treatment and the
outcome. This might represent the relationship between money raised in a campaign by an incumbent
(treatment) and the margin of victory for the incumbent (outcomes), where the common cause might
be challenger quality.

o When there are unblocked backdoor paths, there are two sources of any association between A and Y
one causal (the effect of A on Y') and one non-causal (from the backdoor path). Thus, with unblocked
backdoor paths, it’s difficult to know if any association is a result of the causal effect or the backdoor
path.

« A path is blocked if (a) we control for or stratify a non-collider on that path OR (b) we do not control
for a collider. Thus, in the above sample, if we condition on X, then the backdoor path is blocked. Re-
member that blocked paths have no association following over them. Also remember that for any given
path, we only have to have one of these conditions to hold. So, if we see a path with an uncontrolled
collider, this path is blocked without conditioning on any other variables.

Backdoor criterion

« Howto tell if an effect is identifiable from the graph? From Pearl (2000), we have the backdoor criterion
which states that an effect of A on Y is identifiable if either:
1. No backdoor paths from Ato Y
2. Measured covariates are sufficient to block all backdoor paths from A to Y.

« The first situation is only plausible in a randomized experiment, but the second might be plausible in
observational studies as well.

« The backdoor criterion is fairly powerful. It can tell us (1) is there confounding given this DAG, (2)
if it is possible to removing the confounding, and (3) what variables to condition on to eliminate the
confounding.

Ignorability and backdoor paths

« How does the backdoor criterion relate to ignorability? On DAGs we don't have any explicit poten-
tial outcomes or counterfactuals. If the graph is causal (in the sense that each of arrows represents a
causal effect in the potential outcomes sense), then there is a specific relationship between the backdoor
criterion and ignorability.

o Suppose that we use the backdoor criterion and find that a set of variables X blocks all the backdoor
paths. This implies the treatment assignment is conditionally ignorable: Y (a) 1L A|X.

« Thus, in many cases we refer to the ignorability assumption as “no unmeasured confounders” which is
really short hand for no unblockable backdoor paths.
Assumptions to identify effects

« Ingeneral, there are two approaches to identifying causal effects in observational studies. In the coming
weeks, we will techniques that fall into both camps.



« One thing to note about observational studies: without randomization, it is assumptions that will iden-
tify the causal effects. These assumptions will be untestable in general and require subject-matter
knowledge to justify. The Acemoglu paper that we read is a good example of picking apart the as-
sumptions that underlie an analysis in terms of subject-matter knowledge. This deep understanding of
a place, institution, or set of units allow us to justify and/or criticize causal assumptions.

« Sometimes causal inference is seen as “atheortical” but often theoretical concerns influence what types
of assumptions we find plausible and which we do not. For instance, Acemoglu uses theory to argue
that agents should have induced preferences over political institutions (since they have preferences
over outcomes), which leads him to argue that it will be hard to block all backdoor paths (of course, he
doesn’t use this language).

Selection on the observables

o There are many names for this assumption and they vary by discipline. It is “selection on the observ-
ables” in economics, “no unmeasured confounders” in epidemiology, “exchangability” or “ingorabil-
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ity” in statistics, and “no omitted variables” in political science.

« Basically, it says that selection into treatment is based only on observable data, X. Or, more specifi-
cally, that the treatment assignment, A is independent of the errors in Y, conditional on X. This is a
parametric version of the ignorability assumption, Y (a) 1 A|X.

Exclusion restrictions

« In many instances, it is difficult to justify ignorability because there is unmeasured confounding be-
tween the treatment and the outcome. For instance, with institutions, elites might have preferences
for lower levels of redistribution and presidential systems and elites will attempt to achieve both of
these and often succeed. Thus, the political institutions are not causing fiscal outcomes, but rather elite
preferences and their control over the government is causing both outcomes.

« In these situations, we can still identify causal effects using a different sort of assumption, called an
exclusion restriction. These assume that there exists a variable (or set of variables) that affects the treat-
ment and only affect the outcome through their affect on the treatment. Here is a DAG that describes
the relationship:
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« Here, Z affects A, but has no direct effect or common cause with Y. The latter part of this assump-
tion (no direct effect or common cause) is the exclusion restriction. Its fairly difficult to find valid
instruments and some find them more plausible than others in general.

o We call Z an instrument for A and we’ll talk more about these instrumental variables approaches later
in the term.



Estimating causal effects under no unmeasured confounders

Typical OLS

o Let’s say we have the usual regression formula:
Y = adi + X8 + u
« Does no unmeasured confounders help us identify the causal parameter a? Let’s figure that out. First,
note that an equivalent way of running the same regression is to replace each variable with its residual
from a regression of itself on X:
Vi = ad; + i

« Using the usual OLS theory, we can show that the probability limit of the OLS estimator of « is:

tha = Var(fll) (1)
_ aCov(4;, A;) + Cov(A;, @;) (2)
- Var(4;)
ot Var(4;) ¥

« Thus, the key assumption comes from Cov(A;, i;) = 0. Note that A; and @; are these variables, purged
of their relationship with X;. Thus, under ignorability conditional on X, there should be no covariance
between these two variables should be o because there are no other common causes after accounting
for X;.

o It is instructive to see what happens when this is violated. For example, if @; = )\L- + w;, with w;
independent of the treatment but no L;, then the OLS estimator would be inconsistent:

R Cov(A;, L;
plima®Y = o + /\M
Var(Ai)

« Note that under ignorability, just because we can identify o does not mean that « is, in general, equal
to the average treatment effect, 7. In fact, they will be different in most cases. The « here has a causal
interpretation, just not one as the average treatment effect. We'll talk more about this in the coming
weeks.



Subclassification/stratification

If we have ignorability conditional on some set of covariates X, then how should we proceed? Remem-
ber that conditional ignorability is similar to a block-randomized experiment, where we would estimate
effects within the blocks because we had mini-experiments within the blocks. In observational stud-
ies, we can do the same exact thing: stratify the data based on X and calculate the condtional average
treatment effect 7(x) = E[Y;(1) — Yi(0)| X; = z]. Ignorability ensures that these conditional average
treatment effects are identified.

As Rubin (2008) points out, with ignorability, we know that within levels of X, the treatment and
control groups should be balanced with respect to measured and unmeasured confounders. Again,
this depends crucially on the ignorability assumption. What does balance mean? It means that the
distribution of a variable (or set of variables) is the same in the treated and control groups:

fYD[Ai = 1, X = 2) = f(Yi(0)|Ai = 0, X; = )

The classic example here is the effect of cigarette smokers versus cigar/pipe smokers. In the raw data,
death rates are higher for cigar/pipe smokers compared to cigarette smokers. Of course, there is one
very important confounder: age. Pipe/cigar smokers are likely to be much older than cigarette smokers.
And when Cochran stratified the data into age-based strata and compared smokers of similar ages, he
found that cigarette smokers had higher death rates.

In this example, Cochran divided age into k£ different strata, S; € s1,s2,. .., s;, where s; might be
18-25, s2 might be 26-35, and so on. The key assumption here is that there is balance on X; within
these strata. That is, the distribution of X is the same across levels of the treatment within the strata:

[(Xi|A; =1,8; = s) = f(Xi]A; = 0,5; = )

When this holds along with ignorability, we know that ignorability holds on just S;: (Y;(1),Y;(0)) 1L
A;|S;. This is useful because it means that we don’t have to worry about the continuous nature of age
in this case.

What about when X has has many dimensions? Even if we stratify as above, there will be very few, if
any, units in a given stratum of X;. So, how do we calculate effects? One approach involves stratification
on what we call the propensity score, which is the unit’s individual probability of receiving treatment,
condition on the covariates:

€, = PI‘[Ai = 1|Xz]

Rosenbaum and Rubin (1983) showed that if we correctly estimate the e;, balancing the treatment
and control groups on this estimated propensity score is the same as balancing with respect to the the
entire set of covariates. That is, if we create some strata based on e; and we have balance within strata:
fleilA; =1,8; = s) = f(ei]A; = 0,S; = s), then this guarantees that X; is balanced as well.



« Of course, in observational studies, we don’t know the propensity score. Thus, we can use a logis-
tic regression to estimate the propensity score, then group the units in strata based on the estimated
propensity score and then estimate the average effects within these strata.

« We would run a parametric model with parameters 7 to estimate the propensity scores. First, we es-
timate 9, then use those estimates to get the predicted probabilities, which are simply the propensity
scores:

él‘ = PI‘[AZ‘ = 1|X¢;’A}/]
« For instance, in R, we could easily calculate the propensity scores using the glm function:
pscores <- glm(treat ~ varl + var2 + var3, data = mydata, family = binomial())$fitted.values

« What variables do we include in the propensity score model? Any set of variables that blocks all the
backdoor paths from A; to Y;. Why? Because conditioning or balancing on these variables ensures
balance on the potential outcomes.

o One common diagnostic for this subclassification approach is to check the balance (usually the stan-
dardized difference in means) of each of the covariates within the strata defined by the propensity
score.

Standardization/direct adjustment

« Above we calculated the CATE, 7(z), but what if we want the average treatment effect, 7? Let X be
the support of X;. Thatis, X = {z : f(z) > 0}, where f is the probability density/mass function
for z. It turns out that we can estimate this by simply taking the average of the CATEs weighted by the
distribution of X;:

= Y EY(1) - Yi(0)|X; = 2] Pr(X; = ]
zeX

o If X; is continuous with c.d.f. F'(x), then we have the integral:

= /GX E[Y;(1) = Y;(0)|X; = x]dF(z)

« When Xj is low dimensional and discrete, we can easily calculate Pr[X; = x] with its empirical distri-
bution: & SN I(X; = ).

« For subclassification on the propensity score, you simply weight by the size of each stratum.



