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Why randomization inference?

Effect of not having a runoff in sub-Sarahan African

• e data below comes from Glynn and Ichino () and shows how not having a runoff (Ai = 1)
is related to harrassment of opposition parties (Yi). To test this, they collected data on  sub-Sahara
African countries.

Unit Yi(0) Yi(1) Ai Yi
Cameroon ?   

Kenya ?   
Malawi ?   
Nigeria ?   

Tanzania ?   
Congo  ?  

Madagascar  ?  
Central African Republic  ?  

Ghana  ?  
Guinea-Bissau  ?  

• e central idea behind this study is that when there are no runoff elections, incumbents are able to win
elections with only a plurality of votes. us, they don’t need to court any smaller or opposition parties.
In fact, without a runoff, there are incentives to suppress the turnout through itimidation. When there
is a runoff (Ai = 0), the incumbent/largest party needs to gain wider support and is more likely to
court smaller parties as opposed to itimidating them.

• Even though there is a strong difference in means between the control and treated group (.), it is
unclear if we can say anything causal about these data at all. ere is a very small sample size we have
little idea about the distribution of the outcome.

• For today, we are going to assume that electoral institutions were randomly assigned to these countries,
though, note that the original goal of the Glynn/Ichino paper is to use case-study information in place
of such a randomization assumption.

• e great thing about randomization inference is that it will help us assess causal claims in experimental
or observational data without any need to appeal to a model or large samples.
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What is randomization inference?
• Randomization inference is all about using nothing but the act of physical randomization to make in-

ferences about causal effects. Most of the time, RI is about hypothesis testing. Fisher was the ĕrst to
demonstrate the usefulness of physical randomization in this way. is differs from last week’s discus-
sion of average effects because here we focus on formulating null hypotheses that allow us to ĕll in the
missing potential outcomes for each unit.

• In general, there are three components to randomization inference: a null hypothesis, a test statistic,
and a measure of extremeness.

Brief review of hypothesis testing

• Remember the idea behind hypothesis testing: we want to formulate a null hypothesis that usually
represents a fact about about the data we would like to refute. Usually this comes in the form of a “no
effect” hypothesis. Last weekwemight havewritten an a hypothesis such asH0 : E[Yi(1)]−E[Yi(0)] =
0, which is the null hypothesis of no average treatment effect. e crucial part of hypohtesis testing is
that when we assume the null hypothesis is true, it is usually straightfoward to derive the distribution
of the data and statistics of the data. Once we know the distribution of some statistic, we can compare
that statistic in the observed data to see how likely or unlikely that observation was, under the null
hypothesis. And we take this as evidence for or against the null hypothesis.

• Usually we test a hypothesis of no effect, but we’re not limited to that. In fact, a useful way to construct
a 100 ∗ (1 − α) conĕdence interval is calculate all null hypotheses that where we cannot reject the
null at the α level.

Sharp null hypothesis of no effect

• No effect means no effect: H0 : τi = Yi(0)− Yi(1) = 0 for all units.

• Note that this is different than the null hypothesis of no average treatment effect, which does not imply
the sharp null. Under the null of no average effect, there still could be positive effects for some units
and negative effects for other units.

• is null hypothesis formally links the observed data to all potential outcomes. In fact, it allows us to
ĕll in the missing potential outcomes of our data:

Unit Yi(0) Yi(1) Ai Yi
Cameroon    

Kenya    
Malawi    
Nigeria    

Tanzania    
Congo    

Madagascar    
Central African Republic    

Ghana    
Guinea-Bissau    
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• Now we have a complete dataset under the null hypothesis. Remember that the potential outcomes are
ĕxed in this setup, so all we are doing is using the sharp null hypothesis to assume knowledge of these
ĕxed, but unobserved quantities.

• Note thatwehave chosen the sharpnull hypothesis to be that there is no effect so that τi = τ = 0, butwe
could easily choose another hypothesis such as an additive effect: H0 : τi = 0.2. is implies that for
each treated unit we can calculate their potential outcomes under control easily: Yi(0) = Yi(1)− 0.2.
More generally, we have null hypotheses of the form H0 : τi = τ0 for some ĕxed value τ0.

• When we have a non- null, then note that the observed outcomes will change if the treatment assign-
ments change. us, it is easier to calculate the test statistic for a quantity that does not varying with
the treatment assignment. is quantity is called the adjusted outcome and it Yi − Aiτ0 where τ0 is
the value of the constant treatment effect under the null distribution. Under the null, this is also equal
to Yi(0) and thus doesn’t vary with Ai.

Test statistic

• To assess the evidence for or against the sharp null hypothesis, we need to specify a test statistic. e
test statistic is just a function of the treatment assignment and the response: t(Ai, Yi). In general, this
is just some measure of the relationship between these two variables, but under the null hypothesis, it
becomes a causal quantity because t(Ai, Yi) = t(Ai, Yi(0)). us, under the sharp null we have a test
of a causal quantity.

• is test depends on what test statistic we use and this choice will affect the power of our test against
various alternatives. If we have some idea about the type of effect we are likely to see, this can guide
us. Suppose we thought that the effect will shi some part of the distribution of the potential outcomes
(that is, Yi(1) will have a somehow different distribution than Yi(0)), then we should choose a test
statistic that will measure those shis. We might also want to choose test statistics that are robust
against outliers if that might be a problem in our data.

• Note that the test statistic need not estimate a direct causal effect of any sort, since their only purpose
in Fisher’s RI is to test the sharp null.

Difference in means

• is is the usual difference in means estimator

Tdiff =
1

Nt

N∑
i=1

AiYi −
1

Nc

N∑
i=1

(1−Ai)Yi

• is is a good estimator when there is a constant, additive treatment effect and there are relatively few
outliers in the frequecy distributions of the potential outcomes. We can always perform a transforma-
tion of the observed outcomes (by the natural logarithm, for instance) if the effect is multiplicative or
if the distributions are skewed. is transformed estimator would be:

Tlog =
1

Nt

N∑
i=1

Ai log(Yi)−
1

Nc

N∑
i=1

(1−Ai) log(Yi)
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Difference in median/quantiles

• To further protect against outlier, we might use the differences in quantiles as a test statistics. e
most obvious is the median, which is the quantile at .. Here we use Yt = Yi; i : Ai = 1 and Yc =
Yi; i : Ai = 0.

Tmed = med(Yt)−med(Yc)

• Of course, the median is only one quantile. We could estimate the difference in quantiles at any point
in the distribution (say, the . quantile or the . quantile).

Rank statistics

• In situations with continuous outcomes, small datasets and/or many outliers, it is useful to use what
are called rank statistics. In general, these statistics add together the ranks (higher rank means higher
values of Yi) of the treated units. is statistic will take its maximum when all of the treated units are
ranked above all of the control units and vice versa for the minimum. e rank for a given unit is just
the number of units (including that unit) that have the same or lower value of Y_i(where we use I()
as the idenity function that takes a value of  when the argument is true):

Ri(Y1, . . . , YN ) =
N∑
j=1

I(Yj ≤ Yi)

• Here is the deĕnition of a particular rank statistic, the Wilcoxon rank sum:

Twilcoxon =
N∑
i=1

AiRi

• Note that we have to change the deĕnition of the ranks when there are ties in the data. us, these
statistics are most useful for continuous variables.

• In general, there are many, many other test statistics that might be more or less appropriate for a given
situation. For instance, with pair matching or stratiĕed randomization, there are different test statistics
that may be more appropriate. See Rosenbaum () for more details.

Measure of extremeness

• We need to make a choice about what directions we would consider violation of the null hypothesis.
For instance, do violations come with large values of the test statisic, small/negative values of the test
statistic, or both? e ĕrst two are one-sided tests and the last one is a two-sided test.

• is choice affects how we calculate the p-value below.
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Null/randomization disitribution

• Once we specify the null hypothesis and test statistic we can ĕgure out what the distribution of some
test statistic would be under that null.

• Under the null distribution of no effect, then it doesn’t matter how the treatment was assigned. We
could take any pair and Ęip the treatments and this wouldn’t change the observed outcomes. If Yi(1) =
Yi(0) and Yi = AiYi(1) + (1− Ai)Yi(0), tne Yi = Yi(1) = Yi(0) no matter the value of Ai. at is,
in our data we could switch all of the treatment variables and this would have changed the outcomes
at all. It would change the value of the test statistic, though. If we were using the difference in means,
then the test statistic under the inverse treatment assignment would be -..

• us, under the null we have calculated  different test statistics. But of course we could go further
and ĕgure out the test statistic under every possible treatment assignment vector. In this case there is
a  treated in an experiment of  units, therefore there are

(
10
5

)
possible treatment assignments. Let

Ω be the set of all possible treatment vectors (size K) with representative vector a. Under different
assumptions about the randomization there might be a different number of possible assignment vec-
tors. For instance, suppose that we had used a pair-randomized design for the above data with the
following pairs: (Cameroon, Congo), (Kenya, Madagascar), (Malawi, CAR), (Nigeria, Ghana), (Tan-
zania, Guinea-Bissau). Now there are no longer

(
10
5

)
possible treatments since both Nigeria and Ghana

cannot receive the treatment in any pair-randomized design.

• Once we know each of the possible values that the treatment vector could take, we can calculate the
test statistic for each of these assignments. e distribution of the test statistic across all treatment
assignments is called the null or randomization distribution. When calculate all of these, it becomes
easy to calculate a p-value by ĕnding the proportion of the randomization distribution that is larger
than our observed test statistic:

Pr(t(a,Y) ≥ t(A,Y)|τ = 0) =

∑
a∈Ω I(t(a,Y) ≥ t(A,Y))

K

• In the above, we can replace τ = 0with τ = τ0 for whatever null hypohtesis we are interested in. When
we do that, we just replace the observed outcome t(Ai, Yi)with the adjusted outcome, t(Ai, Yi−Aiτ0).

• e tests that are done this way are valid in the sense that if you choose some test rejection threshold
α, the randomization test will falsely reject the null less than 100α of the time. We don’t have to
rely on large samples or approximations to achieve this, though sometimes we can approximate the
randomization distribution with parametric distributions such as the χ2, Normal, and F .

• In general, this procedure might be very computationally instensive for large values of N and Nt. We
can instead take K samples of the treatment assignment vectors and calculate the p-value with that
sample, which should give accurate approximations. e amount of approximation error will be in the
control of the researcher, by choosing the number of simulations K .
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Beyond hypothesis testing

Conĕdence intervals

• Conĕdence intervals are usually justiĕed using Normal distributions and approximations, but it turns
out that you can create valid conĕdence intervals anytime you have a valid hypothesis test. is is
because there is a duality between conĕdence intervals and hypohtesis tests. A 100(1−α) conĕdence
interval is equivalent to the set of null hypotheses thatwould not be rejected at theα signiĕcance level.
us, we can construct a  conĕdence interval on the constant, additive treatment effect τ by ĕnding
all of the null hypotheses τ0 such that H0 : τ = τ0 is not rejected at the . level.

• Howwouldwedo this? Wewould pick somegrid of possible treatment effects: −0.9,−0.8,−0.7, . . . , 0.7, 0.8, 0.9.
en for each of these values, use the randomization distribution to calculate a p-value for the test
statistic under that null hypothesis. en, ĕnd the lowest value with p > 0.05 and the highest value
with p > 0.05 and that will formulate a  conĕdence interval.

• Note that exact conĕdence intervals (where the coverage is exactly , say) won’t be available in small
samples because the p-values are discrete. Only so many p-values can be observed with an N of 
(., ., ., etc). us, for these the conĕdence will be conservative: the coverage will be at least
100(1− α).

• Also, a two-sided conĕdence interval requires a two-sided hypothesis test.

Point estimates

• Up to this point we have talked about hypothesis tests and conĕdence intervals, but not point estimates.
e best way to do this with randomization inference is to ĕnd the null hypothesis value that is the “least
surprising”; that is, the one that sets the test statistic equal to its expectation under the null.

• In practice, this means you can ĕnd the value of the null hypohtesis that gives the largest p-value.

• Nicely, this point estimate inherits the properties of the test statistic on which it is based. at is,
the estimator is consistent if the test is consistent. A consistent test is one in which the probability of
rejecting false hypotheses tends to  as the sample size increases.

Including covariate information

• Last week we talked about how including covariates in a regression of the outcome on the treatment
could make the estimates of the treatment effect more precise. In much the same way, we can adjust
the outcomes in randomization inference to shrink the size of the conĕdence intervals.

• To do this, we ĕrst have to a vector of covariates Xi that we think are predictive of Yi. In a normal
regression, we would just include those covariates, but that doesn’t quite work in this case. Instead,
we will use an approach from basic linear modeling. Remember that one way to control for a set of
covariates is run a regression of Yi on Xi, then calculate the residuals of that regression, ϵi. en, run
a regression of ϵi on our treatment indicator, Ai. Covariate adjustment in randomization inference
works in a similar manner.
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• First, we deĕne a function that will produce residuals, ϵ(Y (0), X) = e. is could be a crazy machine
learning alogrithm or a simple regression, but the important point is that it is predeĕned and does not
involve the treatment.

• Next, calculate the potential outcomes under control for all units using some hypothesis about the
treatment effect, τ0, Yi(0) = Yi − Aiτ0. Use these values to calculate the residuals under that null:
ei(0) = ϵ(Yi −Aiτ0, Xi).

• Last, use these residuals in place of the outcome in calculating the test statistics in the randomization
distribution: t(Ai, ei(0)). en, use this test statistic and its randomization distribution to calculate
p-values in the same way as above. Go nuts, calculate conĕdence intervals as well.

• As long as we do all of the data exploration to ĕt Yi and Xi before we calculate the test statistics, this
procedure is still valid.
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