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Randomization and identiĕcation

What is identiĕcation?

• Indentiĕcation tells us what quantities are estimable if we had iniĕnite data and so we didn’t have to
worry about randomvariability. us, we are even abstracting away from the idea of uncertainty: could
we know this estimand in a situation with basically standard errors of size .

• You’ve probably seen a statistical identiĕcation problem before. Let’s say you are running a regression
on a set of mutually exclusive and exhaustive dummy variables. Say, Mi = 1 for male and Fi = 1 for
not male. You cannot identify the coefficients on both of these variables in the same regression (even
if we had inĕnite sample sizes) because for any value of one coefficient, there is a value of the other
coefficient that produces the same conditional mean of the outcome (and thus the same value of the
least squares).

• Indentiĕcation of statistical models is not inherently about causality because statistical models are not
inherently causal. e history of what identiĕcation meant in economics is quite interesting and Pearl
dedicates part of his book to it. In this class, we’ll usually mean “indentiĕcation” to mean the statistical
identiĕcation of causal parameters.

What is the selection problem?

• Let’s ĕrst look at what wemight call the prima facie effect, which is just the difference inmeans between
those who take a treatment and those who do not. Let’s imagine that this is the average Democratic
share of the two-party vote for Democratic Senate candidates that go negative (Ai = 1) and those that
stay positive (Ai = 0).

E[Yi|Ai = 1]− E[Yi|Ai = 0] = E[Yi(1)|Ai = 1]− E[Yi(0)|Ai = 0] ()
= E[Yi(1)|Ai = 1]− E[Yi(0)|Ai = 1] ()
+ E[Yi(0)|Ai = 1]−E[Yi(0)|Ai = 0] ()

• e second line here is the average treatment effect on the treated and the third line is what we call
selection bias. It measure how different the treated and control groups are in terms of their poten-
tial outcome under control. at is, it measures how different (in terms of potential outcomes) the
candidates who went negative are compared to those that remained positive.
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• Because of the selection bias, we say that the ATT is unidentiĕed because for any value of the ATT
there is an amount of selection bias that would create the observed difference in means.

• To see this, imagine we say a negative prima facie effect of negativity. at is, negative Democrats did
worse than positive Democrats. is could mean that the ATT is negative and there is a causal effect
OR it could mean that the ATT is positive and there is an offsetting amount of selection bias.

• Now, you can probably see that if there are bounds on the outcome, the effect isn’t completely uniden-
tiĕed because the bounds on Yi imply that there can only be so much selection bias. is idea is what
forms the foundation of nonparametric bounds, which we will talk more about later.

Randomization solves the selection problem

• Randomizing the treatment means that the treated group is a random sample from the population. We
know that the mean of a variable in a random sample is an unbiased estimate of that variable in the
population. erefore, the observed mean outcome in a randomly chosen treatment group is the same
as the mean outcome in the population.

E[Yi(0)|Ai = 0] = E[Yi(0)] = E[Yi(0)|Ai = 1]

• Speciĕcally, randomization implies exchangablility or ignorability: the potential outcomes are inde-
pendent of the treatments. We write ignorability like this:

(Yi(1), Yi(0)) ⊥⊥ Ai

• is is not the same as the treatment being independent of the observed outcomes (Yi ⊥⊥ Ai). Ob-
viously, if there is a causal effect, then the treatment won’t be independent of the outcome in a ran-
domized experiment (even though the randomization guarantees the independence of the potential
outcomes and the treatment).

• How does randomization help indentify the causal effect? It ensures that there is no selection bias Note
that, because of ingorability:

E[Yi(0)|Ai = 1]− E[Yi(0)|Ai = 0] = E[Yi(0)]− E[Yi(0)] = 0

Plugging this in above gives us:

E[Yi|Ai = 1]− E[Yi|Ai = 0] = E[Yi(1)|Ai = 1]− E[Yi(0)|Ai = 1] + 0 ()
= E[Yi(1)]− E[Yi(0)] = τ ()

• Randomization in graphs: randomization implies that there is only one arrow into the treatment: that
of the randomization.
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Types of randomizations/experiments

• Bernoulli trials: Ęip coins for each person in the experiment. Problematic because there could be very
large or very small treated groups.

• Completely randomized experiments: choose a number of treated units Nt and randomly choose Nt

units from theN units in the population. Fixes the number of treated units, but all units have the same
marginal probability of being treated. Problem: if there are covariates available, then you might get
very unbalanced randomizations.

• Stratiĕed randomized experiment: form J blocks, bj , j = 1, . . . , J , based on the covariates and then
use completely randomized assignment in each block. is eliminates the possibility of “bad random-
izations” since the treatment is by design balanced within blocks. is type of experiment leads to
conditional ignorability: (Yi(1), Yi(0)) ⊥⊥ Ai|Bi, where Bi is the blocking variable.

• Pair randomized experiments: a stratiĕed randomized experiments where each block has  units, one
of which receives the treatment. An extreme version of the stratiĕed/blocked randomized experiment.

• What type of experiment was the Gerber, Green, and Larimer paper?

• Natural experiment: experiment where treatment is randomized in some fashion, but that randomiza-
tion was not under the control of the researcher.

• Natural experiments obviously have lots of pitfalls, because we didn’t perform the randomization, it’s
more difficult to justify. How does the Hyde paper do at justifying this? She claims that the election
observers mimicked random assignment. Does that seem right?

Effect modiĕcation

• Wemight think that the effect of negativitymight vary bywhether or not the candidate is an incumbent.
at is, for a given covariate, Xi and two different levels of that covariate, x and x∗, we have

τ(x) ≡ E[Yi(1)− Yi(0)|Xi = x] ̸= E[Yi(1)− Yi(0)|Xi = x∗] ≡ τ(x∗).

• e difference between τ(x) and τ(x∗)might be causal, in which case call this a causal effect modiĕer
and itmight be non-causal inwhich casewe call it a surrogate effectmodiĕer. ese surrogatemodiĕers
are indicators of some other variable which is truly the causal modiĕer.

• In the Wantchekon paper, he looks at effect modiĕcation by gender, but this is surely a surrogate effect
modiĕer.

• Now, can we identify these effects, sometimes called conditional average treatment effects (CATE).
In a radominzed experiement, yes we can. Note that in a completely randomized experiment we have
ignorability: (Yi(1), Yi(0)) ⊥⊥ Ai. Also, ignorability implies conditional ignorability: (Yi(1), Yi(0)) ⊥
⊥ Ai|Xi.

• By the same logic as before and using the fact that ignorability implies conditional ignorability, we know
that

E[Yi|Ai = 1, Xi = x]− E[Yi|Ai = 0, Xi = x] = τ(x)
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• In stratiĕed randomized experiments, we can estimate effect modiĕcation by the blocks (and using any
variation within blocks since there is just a mini randomized experiment).

• Why do we care about effect modiĕcation? Because it’s important for external validity. ey can also
give us some purchase on how the effect works.

Estimation and Inference

Samples versus Populations

Large sample/population/super-population parameters

• We are oen interested in making inferences about a large population of which we have a random
sample. Let’s call the population V .

• We will deĕne the population average treatment effect (PATE) as the population average of the indi-
vidual treatment effects:

PATE = τ = E[Yi(1)− Yi(0)]

• We can deĕne the population average treatment effect on the treated (PATT, or τatt) similarly, in ad-
dition to the conditional average treatment effect τ(x).

Finite sample results

• Sometimes instead of making inference about a population, we would rather make inference about the
sample that we actually observed. is might make more sense in a lot of political science, where we
don’t have a larger super population in mind.

• Suppose that we have a sample, S, of units, i = 1, . . . , N where Nt of the units are treated.

• For this, we can deĕne the sample average treatment effect (SATE) as the in-sample average of the
potential outcomes:

SATE = τS =
1

N

∑
i∈S

Yi(1)− Yi(0)

• e SATE is the in-sample version of the PATE and for any given sample, won’t equal the PATE. In
fact, the SATE varies over samples from the population. We’re going to ignore this variation when
conducting in-sample causal inference and just focus on estimate the SATE for our sample.

• Once we assign some groups to treatment and some to control we do not actually observe Yi(1) and
Yi(0) and so we cannot actually observe SATE. We can, however, estimate it:

τ̂S =
1

Nt

∑
i:Ai=1

Yi −
1

Nc

∑
i:Ai=0

Yi

• Note that, conditional on the sample, the only variation in τ̂S is from the treatment assignment. Uncon-
ditionally, there are two sources of variation: the treatment assignment and the sampling procedure.
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• We can show that, with a completely randomized experiment assignment, τ̂S is unbiased for τS and,
in fact, τ :

E[τ̂S |S] =
1

Nt

∑
i:Ai=1

E[Yi|Ai = 1, S]− 1

Nc

∑
i:Ai=0

E[Yi|Ai = 0, S] ()

=
1

Nt

∑
i:Ai=1

E[Yi(1)|S]−
1

Nc

∑
i:Ai=0

E[Yi(0)|S] ()

=
1

Nt
NtE[Yi(1)|S]−

1

Nc
NcE[Yi(0)|S] ()

= E[Yi(1)− Yi(0)|S] =
1

N

∑
i∈S

Yi(1)− Yi(0) = τS ()

• By the law of iterated expectations, we also know that E[E[τ̂S |S]] = E[τS ] = τ . us, the difference
in means is also unbiased for the PATE.

• It turns out that the sampling variance of the difference in means estimator is:

V (τ̂S |S) =
S2
c

Nc
+

S2
t

Nt
−

S2
τi

N
,

where S2
c and S2

t are the in-sample variances of Yi(0) and Yi(1), respectively. We can use sample variances
within levels of Ai to estimat these. e last term, S2

τi is the in-sample variance of the individual treatmente
effects. Obviously, we don’t observe any individual treatment effects, so we can’t estimate a sample variance
of this quantity. If the treatment effect is constant, then this term equals zero.

• It turns out that the overall variance of the estimator is simply:

V (τ̂S) =
σ2
c

Nc
+

σ2
t

Nt
,

which can be estimated with this simple variance estimator:

V̂ =
ŝ2c
Nc

+
ŝ2t
Nt

• is estimator is unbiased for the variance of the difference in means in the population OR a conser-
vative estimate of the variance of the difference in means in the sample.

Can we use regression with experiments?

• We can just run a regression of the outcome on a binary treatment indicator. Note that this works even
if the outcome is binary because this is just a difference in means test.

• First, let’s remember how we relate the potential outcomes to the observed outcome:
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Yi = AiYi(1) + (1−Ai)Yi(0) ()
= AiYi(1) + (1−Ai)Yi(0) + E[Yi(0)]− E[Yi(0)] +AiE[Yi(1)− Yi(0)]−AiE[Yi(1)− Yi(0)]

()
= E[Yi(0)] +AiE[Yi(1)− Yi(0)] + (Yi(0)− E[Yi(0)]) +Ai · ((Yi(1)− Yi(0))−E[Yi(1)− Yi(0)])

()
= α+Aiτ + ϵi ()

• See that α = E[Yi(0)] and remember that τ = E[Yi(1) − Yi(0)]. And also the residual here is the
deviation for the control group plus the treatment effect hetergeneity.

• Let’s check to see if the errors here are independent of the treatment, which would imply that a regres-
sion estimator τ̂ols would be unbiased for τ :

E[ϵi|Ai = 0] = E[Yi(0)− E[Yi(0)]|Ai = 0] = E[Yi(0)|Ai = 0]− E[Yi(0)] = 0

and

E[ϵi|Ai = 1] = E[Yi(1)− E[Yi(0)] + E[Yi(1)− Yi(0)]|Ai = 1] = E[Yi(1)|Ai = 1]− E[Yi(1)] = 0

• us, just using the randomization assumption, we have justiĕed the use of regression.

• Randomization implies that we don’t have to adjust for any covariates when estimating causal effects.

• But we know that, on average, the treatment will be uncorrelated with any covariates, so adding them
to a regression won’t change the consistency of the estimator, even if the regression is misspeciĕed, for
instance, because the true population regression function is nonlinear. It does have two other effects,
though. One is that it can make the treatment effect estimates more precise. e other is that it can
add ĕnite sample bias.

• e ĕnite sample bias is due to the fact that even if randomization implies the population correlation
between the treatment and covariates will be zero, it won’t be zero in ĕnite samples, which will bias our
estimates.

• Should we use a logit or a probit for a binary outcome? With an experiment that focuses on estimating
the treatment effect, probably not.

Details about Experiments

Diagnostics

• ere are we can check to see that the randomization worked by comparing the treatment groups on a
host of background covariates. e treatment status should be unrelated to these background covari-
ates. Now this doesn’t mean that the treatment is unrelated to the potential outcomes, but it does give
us conĕdence that the randomization worked at it was supposed to on the observables. Also note that
some of the covariates could be related to the treatment by random chance. With  variables, one of
them should have a p-value below . by random chance.
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Blocking

• Sometimes with a completely randomized experiment, you end up with bad randomizations.

• SATE for blocked estimators is just the weighted average of the within-blockATE estimate. eweights
are the size of the blocks relative to the size of the sample.
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