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Association versus Causation

What is association?

• Let’s take two variables, Yi and Ai. ese variables obviously have a joint distribution: Pr[Y,A]. We
generally say that these two variables are independent if one does not predict the other. To ĕx ideas,
let’s have Y be whether or not a Democrat won a Senate race andA be an indicator for whether or not
the Democrat went negative during the campaign.

• We can write this with conditional probability: Pr[Y = 1|A = 1] = Pr[Y = 1|A = 0]. at is,
knowing what the value ofA is doesn’t affect the distribution of Y . We write independence (following
Dawid) as Y ⊥⊥ A.

• If the variables are not independent, we say they are dependent or associated: Pr[Y = 1|A = 1] ̸=
Pr[Y = 1|A = 0].

• Associations between variables, very famously, are not necessarily due to causation.

What is causation? Counterfactuals, etc.

• Causation is a complicated concept, even if it appears intuitive. Like any such concept, there has been
reams and reams written about it from both a statistical and a philosophical perspective.

• In this class, we’re going to predominantly use a counterfactual or potential outcome approach to causal
inference. ere are other approaches (graphical, probabilistic, necessary/sufficient), but they either
have issues with non-deterministic relationships or they end up having the same assumptional bite, so
to speak. Our approach to deĕning causality will not help us avoid difficult assumptions.

• e counterfactual approach is useful for a couple of practical reasons: . other people use it. . it
helps ĕx ideas and gives us some powerful intuition. Perhaps not great reasons, but hey.

• Our primitives will be what Rubin calls “potential outcomes” (others call them “counterfactual out-
comes”). Yi(a = 1) is value that Y would take if the Democrat went negative. Yi(a = 0) is the
outcome when the Democrat stays positive.

• We call Y the outcome variable and we’ll oen callA the treatment variable, even if we are not dealing
with a randomized control trial or even binary variable.
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• For each unit, we observe one of these two possible potential outcomes. We can never observe both of
the potential outcomes for the same unit. is is called the fundamental problem of causal inference.
At a basic level, we cannot observe your job market performance if you take this class and your job
market performance if you don’t take this class. Now, you might say that you could not take this class
now, go on the job market, then the next year take this class and go on the job market again (this is
called a cross-over study). Don’t we observe both potential outcomes for the same unit then? No,
because you are not the same unit in both years. At a basic level, you are a year older/wiser than before.
We have to make strong assumptions in order to get around this fundamental problem.

• An assumption of temporal stability and causal transience could help us get around FPCI, but these are
strong assumptions, especially for the social sciences. Lightbulbs are rare. Lab experiments tend to use
unit homogeneity to get around this problem. All of these are assumptions. though.

Consistency/SUTVA

• We need some way of connecting these potential outcomes to the observed outcomes. We will do this
with a consistency assumption. is is what epidemiologists call it. Economists and statisticians call
the “stable unit treatment value assumption”.

• Yi(a) = Yi if Ai = a.

• Two key points here: no interference, between units. My potential outcome does not depend on other’s
treatment. ink about the Senate elections: this implies that other democratic senators going negative
doesn’t affect my potential outcome. is can be very wrong: time, equilibrium effects.

• Ill deĕned counterfactuals/multiple versions of the treatment. time

Key Questions:

• What experiment do we want to emulate?

Estimands

• Suppose there are a population of units, i = 1, . . . , N and there is a set Ti of treatments that a

• Individual causal effect (ICE): τi = Yi(1)− Yi(0)

• Average treatment effect (ATE): τATE = 1
N

∑N
i=1 Yi(1) − Yi(0). is is the difference between the

average outcome in a world where all Democrats go negative and a world in which all Democrats stay
positive.

• Average treatment effect (ATE) for a subpopulation: τATE,f = 1
Nf

∑
i:Xi=f Yi(1)− Yi(0), where Nf

is the number of units in the subpopulation.

• Average treatment effect on the treated (ATT): τATE,f = 1
Nt

∑
i:Ai=1 Yi(1)− Yi(0).

• We might be interested in the ATT for a couple of reasons. First, and least compelling, sometimes
our methods choose it. Matching methods generally estimate an ATT. Second, the ATT requires fewer
assumptions to identify than the ATE. Last, we might be interested for scientiĕc reasons: we want to
estimate the effect of a policy for those states that actually adopt the policy.
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• Last, note that we can also deĕne estimands in terms of the potential outcomes. Let’s say that Y is
the Democratic share of the two-party vote. en we might be interested in the effect of negativ-
ity for Democrats that would win whether or not they went negative: i : Yi(0) > 50, Yi(1) > 50.
Denote the number of such candidates Nw. Here is the effect we might be interested in: τATE,w =
1

Nw

∑
i:Yi(0)>50,Yi(1)

Yi(1)− Yi(0). You can probably see that we can’t directly observe this subgroup.
You might wonder why we would want to deĕne such a parameter. All will be reveals when we get to
instrumental variables.

• Note that the potential outcomes here are pre-treatment variables: they are ĕxed attributes of the units.

Graphical causal models

DAGs and some graph theory

• We can encode assumptions about causal relationships inwhat are called causalDirectedAcyclicGraphs
or DAGs. Here is an example:

..A.

X

. Y

• Each arrow represents the presence of a direct causal effect (that is, an individual causal effect as above).
e lack of an arrow represents the lack of a causal effect.

• ese are directed because each arrow implies a direction (aspirin causes pain relief, not the other way
around). ey are acyclic because there are no cycles: a variable cannot cause itself, either directly or
through cycles. We have r.v.s V = (V1, . . . , VM ) which directed edges and no cycles. PAm are the set
of parents of Vm: these are the nodes that have a direct arrow into Vm. In the above examples,M = 3
and we have V1 = X,V2 = A and V3 = Y , then PA3 = (L,A).

• Causal Markov assumption: conditional on its direct causes, a variable Vj is independent of its non-
descendents: Pr(Vj |V1, . . . , Vj−1) = Pr(Vj |PAj). is allows us to factorize the joint distribution of
the data using a Markov structure:

f(v) =

M∏
j=1

f(vj |paj)

• Note that for a graph to be causal, all common causes, measured or unmeasured, of any pair of variables
in the graph must also be included in the graph.

Causal DAGs and associations.

• DAGs are a convenient way to encode causal assumptions about the problem at hand, but they also can
tell us about potential associations between variables in the graph. is is what makes them extremely
useful.
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• A path between two variables (C and D) in a DAG is a route that connects the variables following
nonintersecting edges. Apath is causal if those edges all have their arrows pointed in the samedirection.
Otherwise it is noncausal. Here is an example of a noncausal path betweenA and Y (a classic example
here is the relationship between drowning deaths and ice cream sales):

..A.

X

. Y

• Two variables connected by common causes will have a marginal associational relationship. at is, in
the above example Pr[Y = 1|A = 1] ̸= Pr[Y = 1|A = 0]. ere is a correlation. Otherwise, there
will be no association between them.

• Let’s look at another situation:

..A.

X

. Y

Here, X is a collider: a node that two arrows point into. What happens here? Are A and Y related? No.
Imagine that A is getting the Ęu and Y is getting hit by a bus. Both of these might cause us to be in the
hospital, but knowing that I have the Ęu doesn’t give me any information about whether or not I’ve been hit
by a bus. e Ęow of association is blocked by a collider.

• Abovewe have shown howmarginal associations Ęow over paths, but what about relationships between
variables within levels of a third variable? We can represent conditioning on a variable by drawing a
box around it.

..A.

X

. Y

Conditioning on a variable is on a causal path or on a variable that is a common cause (above), will block the
association that Ęows over that path.

• Conditioning on a collider (a common consequence) actually opens the Ęow of association over that
path, even though before there was none:

..A.

X

. Y

To see why this is the case, let’s go back to the Ęu, getting hit by a bus example. In this case the common
consequence was being in the hospital. If we condition on this by, say, looking only at people who are in the
hospital, we will induce a negative relationship between getting the Ęu and getting hit by a bus. If I know that
a person in the hospital for the Ęu, it is less likely that they were hit by a bus: Pr[Y = 1|A = 0, X = 1] ̸=
Pr[Y = 1|A = 1, X = 1]. is is even though there is no effect of getting the Ęu on getting hit by a bus. is
also comes up with different criteria for getting into college/grad school.
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• To sum up: associations Ęow over paths (causal or noncausal) that don’t contain a collider. ese
associations can be blocked by conditioning a variable on the path that is not a collider. We’ll come
back to these properties later when we talk about the back-door criteria.
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