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Welcome!

• Me: Matthew Blackwell, Assistant Professor in the
Government Department

• What I study: causal inference, missing data, American
politics, slavery, and so on.

• Your TF: Stephen Pettigrew, PhD Candidate in Gov.
• What he studies: Bayesian statistics, machine learnings,

American politics, sports analytics.



Goals

1. Be able to understand and use recent advances in causal
inference

2. Be able to diagnose problems and understand assumptions of
causal inference

3. Be able to understand almost all causal inference in applied
political science

4. Provide you with enough understanding to learn more on your
own

5. Get you as excited about methods as we are



Prereqs

• Biggest: clear eyes, full hearts aka willingness to work hard.
• Working assumption is that you have taken Gov 2000 and

2001 or the equivalent.
• Basically, you vaguely still understand what this is:

(𝑋′𝑋)−􏷠𝑋′𝑦

• And these terms are familiar to you:
▶ bias
▶ consistency
▶ null hypothesis
▶ homoskedastic
▶ parametric model
▶ 𝜎-algebras (just kidding)



R for computing

• It’s free
• It’s becoming the de facto standard in many applied statistical

fields
• It’s extremely powerful, but relatively simple to do basic stats
• Compared to other options (Stata, SPSS, etc) you’ll be more

free to implement what you need (as opposed to what Stata
thinks is best)

• Will use it in lectures, much more help with it in sections



Teaching resources

• Lecture (where we will cover the broad topics)
• Sections (where you will get more specific, targeted help on

assignments)
• Canvas site (where you’ll find the syllabus, assignments, and

where you can ask questions and discuss topics with us and
your classmates)

• Office hours (where you can ask even more questions)



Textbook

• Angrist and Pischke, Mostly Harmless Econometrics:
▶ Chatty, opinionated, but intuitive approach to causal inference
▶ Very much from an econ perspective

• Hernan and Robins, Causal Inference.
▶ Clear and basic introduction to foundational concepts
▶ From a biostatistics/epidemiology perspective
▶ Relies more on graphical approaches

• Other required readings are posted on the website.
• Lecture notes will be other main text.



Grading

1. biweekly homeworks (50%)
2. final project (40%)
3. participation/presentation (10%)



Final project

• Roughly 5-15 page research paper that either:
▶ applies some methods of the course to an empirical problem, or
▶ develops or expands a methodological approach.

• Co-authorship is encouraged, but comes with higher
expectations.

• Fine to combine with another class paper.
• Focus on research design, data, methodology, and results.
• Milestones throughout the term, presentation on 12/10.



Broad outline

1. Primitives
▶ Potential outcomes, confounding, DAGs

2. Experimental studies
▶ Randomization, identification, estimation

3. Observational studies with no confounding
▶ Regression, weighting, matching

4. Observational studies with confounding
▶ Panel data, diff-in-diff, IV, RDD

5. Misc. Topics
▶ Mechanisms/direct effects, dynamic causal inference, etc



What is causal inference?

• Causal inference is the study of counterfactuals:
▶ what would happened if we were to change this aspect of the

world?
• Social science theories are almost always causal in their nature.

▶ H1: an increase in 𝑋 causes 𝑌 to increase
• Knowing causal inference will help us:

1. understand when we can answer these questions, and
2. design better studies to provide answers



What is identification?

• Identification of a quantity of interest (mean, effect, etc) tells
us what we can learn about that quantity from the type of
data available.

• Would we know this quantity if we had access to unlimited
data?

▶ No worrying about estimation uncertainty here.
▶ Standard errors on estimates are all 0.

• A quantity is identified if, with infinite data, it can only take
on a single value.

• Statistical identification: not possible to estimate some
coefficients in a linear model.

▶ Dummy for incumbent candidate, 𝑋𝑖 = 1 and dummy for
challenger candidate, 𝑍𝑖 = 1.

▶ Can’t estimate the coefficient on both in the same model, no
matter the sample size.



Causal identification

• Causal identification tells us what we can learn about a causal
effect from the available data.

• Identification depends on assumptions, not on estimation
strategies.

• If an effect is not identified, no estimation method will recover
it.

• ”What’s your identification strategy?” = what are the
assumptions that allow you to claim you’ve estimated a causal
effect?

• Estimation method (regression, matching, weighting, 2SLS,
3SLS, SEM, GMM, GEE, dynamic panel, etc) are secondary
to the identification assumptions.



Lack of identification, example

• High positive correlation.
• But without assumptions, we learn nothing about the causal

effect.



Notation

• Population of units
▶ Finite population: 𝑈 = {1, 2, … ,𝑁}
▶ Infinite (super)population: 𝑈 = {1, 2, … ,∞}

• Observed outcomes: 𝑌𝑖
• Binary treatment: 𝐷𝑖 = 1 if treated, 𝐷𝑖 = 0 if untreated

(control)
• Pretreatment covariates: 𝑋𝑖, could be a matrix



What is association?

• Running example: effect of incumbent candidate negativity on
the incumbent’s share of the two party vote as the outcome.

• If 𝑌𝑖 and 𝐷𝑖 are independent written 𝑌 ⟂⟂ 𝐷:

Pr[𝑌 = 1|𝐷 = 1] = Pr[𝑌 = 1|𝐷 = 0]

• If the variables are not independent, we say they are
dependent or associated:

Pr[𝑌 = 1|𝐷 = 1] ≠ Pr[𝑌 = 1|𝐷 = 0]

• Association: the distribution of the observed outcome depends
on the value of the other variable.

• Nothing about counterfactuals or causality!



Potential outcomes

• We need someway to formally discuss counterfactuals. The
Neyman-Rubin causal model of potential outcomes fills this
role.

• 𝑌𝑖(𝑑) is the value that the outcome would take if 𝐷𝑖 were set
to 𝑑.

▶ 𝑌𝑖(1) is value that 𝑌 would take if the incumbent went
negative.

▶ 𝑌𝑖(0) is the outcome if the incumbent stays positive.

• Potential outcomes are fixed features of the units.
• Fundamental problem of causal inference: can only observe

one potential outcome per unit.
• Easy to generalize when 𝐷𝑖 is not binary.



Manipulation

• 𝑌𝑖(𝑑) is the value that 𝑌 would take under 𝐷𝑖 set to 𝑑.
• To be well-defined, 𝐷𝑖 should be manipulable at least in

principle.
• Leads to common motto: ”No causation without

manipulation” Holland (1986)
• Tricky causal problems:

▶ Effect of race, sex, etc.



Consistency/SUTVA

• How do potential outcomes relate to observed outcomes?
• Need an assumption to make connection:

▶ “Consistency” in epidemiology
▶ “Stable unit treatment value assumption” (SUTVA) in econ

and stats.
• Observed outcome is the potential outcome of the observed

treatment:
𝑌𝑖(𝑑) = 𝑌𝑖 if 𝐷𝑖 = 𝑑

• Also write this as:

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0)

• Two key points here:
1. No interference between units: 𝑌𝑖(𝑑􏷠, 𝑑􏷡, … , 𝑑𝑁 ) = 𝑌𝑖(𝑑𝑖)
2. Variation in the treatment is irrelevant.



Causal inference = missing data

Negativity Observed Potential
(Treatment) Outomes Outcomes

𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1)
0 .63 .63 ?
0 .52 .52 ?
0 .55 .55 ?
0 .47 .47 ?
1 .49 ? .49
1 .51 ? .51
1 .43 ? .43
1 .52 ? .52



Estimands

• What are we trying to estimate? Differences between
counterfactual worlds!

• Individual causal effect (ICE):

𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0)

▶ Difference between what would happen to me under treatment
vs. control.

▶ Within unit! ⇝ FPOCI
▶ Almost always unidentified without strong assumptions

• Average treatment effect (ATE):

𝜏 = 𝔼[𝜏𝑖] =
1
𝑁

𝑁
􏾜
𝑖=􏷠

[𝑌𝑖(1) − 𝑌𝑖(0)]

▶ Average of ICEs over the population.
▶ We’ll spend a lot time trying to identify this.



Other estimands

• Conditional average treatment effect (CATE) for a
subpopulation:

𝜏(𝑥) = 𝔼[𝜏𝑖|𝑋𝑖 = 𝑥] = 1
𝑁𝑥

􏾜
𝑖∶𝑋𝑖=𝑥

[𝑌𝑖(1) − 𝑌𝑖(0)],

▶ where 𝑁𝑥 is the number of units in the subpopulation.
• Average treatment effect on the treated (ATT):

𝜏𝐴𝑇𝑇 = 𝔼[𝜏𝑖|𝐷𝑖 = 1] = 1
𝑁𝑡

􏾜
𝑖∶𝐷𝑖=􏷠

[𝑌𝑖(1) − 𝑌𝑖(0)],

where 𝑁𝑡 = ∑
𝑖𝐷𝑖.



Samples versus Populations

• Estimands above all at the population level.
• Sometimes easier to make inferences about the sample

actually observed.
• Sample 𝑆 ⊂ 𝑈 of size 𝑛 < 𝑁, with 𝑛𝑡 treated and 𝑛𝑐 = 𝑛 − 𝑛𝑡

controls.
• Sample average treatment effect (SATE) is the average of

ICEs in the sample:

𝑆𝐴𝑇𝐸 = 𝜏𝑆 =
1
𝑛
􏾜
𝑖∈𝑆

[𝑌𝑖(1) − 𝑌𝑖(0)]

• Limit our inferences to the sample and don’t generalize.
• In this context, usually refer to the ATE as the PATE.



Why focus on the sample?

• SATE is the in-sample versions of the PATE.
• SATE varies over samples from the population, whereas the

PATE is fixed.
• SATE still unknown because we only observe 𝑌𝑖(1) or 𝑌𝑖(0) for

unit 𝑖
• Estimators for the SATE have lower variance (less useful than

it sounds).
• Useful when:

1. We don’t have a random sample from the population ⇝
extrapolation bias

2. The sample is the population (countries, states, etc)



Directed Acyclic Graphs

• We can encode assumptions about causal relationships in
what are called causal Directed Acyclic Graphs or DAGs. Here
is an example:

𝐷

𝑋

𝑌

• Each arrow = a direct causal effect: 𝑌𝑖(𝑑) ≠ 𝑌𝑖(𝑑′) for some 𝑖
and 𝑑

• Lack of an arrow = no causal effect: 𝑌𝑖(𝑑) = 𝑌𝑖(𝑑′) for all 𝑖 and
𝑑

• Directed: each arrow implies a direction
• Acyclic: no cycles: a variable cannot cause itself
• Causal Markov assumption: conditional on its direct causes, a

variable 𝑉𝑗 is independent of its non-descendents.



Causal DAGs and associations

• Can use DAGs to find potential associations between variables
in the graph.

• A path between two variables (C and D) in a DAG is a route
that connects the variables following nonintersecting edges.

• A path is causal if those edges all have their arrows pointed in
the same direction.

▶ Causal: 𝐷 → 𝑋 → 𝑌
▶ Noncausal: 𝐷 ← 𝑋 → 𝑌



Confounders

𝐷

𝑋

𝑌

• 𝑋 here is a confounder (or common cause).
• Two variables connected by common causes will have a

marginal associational relationship.
• That is, in this example:

Pr[𝑌 = 1|𝐷 = 1] ≠ Pr[𝑌 = 1|𝐷 = 0]



Colliders

𝐷

𝑋

𝑌

• Here, 𝑋 is a collider: a node that two arrows point into.
• Are 𝐷 and 𝑌 related? No. Why?
• The flow of association is blocked by a collider so that here:

Pr[𝑌 = 1|𝐷 = 1] = Pr[𝑌 = 1|𝐷 = 0]

• Example:
▶ 𝐷 is getting the flu and 𝑌 is getting hit by a bus.
▶ 𝑋 is being in the hospital
▶ Knowing that I have the flu doesn’t give me any information

about whether or not I’ve been hit by a bus.



Conditioning on a confounder

• What happens when we condition on a variable?
• We can represent conditioning on a variable by drawing a box

around it.

𝐷

𝑋

𝑌

• Can block the flow of association by:
1. conditioning on a variable on a causal path, or
2. conditioning on a confounder (above)



Conditioning on a collider

• Conditioning on a collider (a common consequence) actually
opens the flow of association over that path, even though
before there was none:

𝐷

𝑋

𝑌

• Back to flu/bus example:
▶ Conditional on being in the hospital, there is a negative

relationship between the flu and getting hit by a bus.
• We’ll talk more about these concepts in the next few weeks.



To sum up

• Causal inference is about comparing counterfactuals.
• Identification is figuring out what we can learn under a set of

assumption with unlimited data.
• There are a number of potential causal quantities to identify

and estimate.
• DAGs are a useful way to encode assumptions and assess

potential associations.
• Next week: identifying causal effects in experiments.


