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Where are we? Where are we

going?

= Last few weeks: regression estimation and inference with one
and two independent variables, varying effects

= This week: the general regression model with arbitrary
covariates

= Next week: what happens when assumptions are wrong



Nunn & Wantchekon

= Are there long-term, persistent effects of slave trade on
Africans today?

= Basic idea: compare levels of interpersonal trust (Y;) across
different levels of historical slave exports for a respondent's
ethnic group

= Problem: ethnic groups and respondents might differ in their
interpersonal trust in ways that correlate with the severity of
slave exports

= One solution: try to control for relevant differences between
groups via multiple regression
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Nunn & Wantchekon

VOL. 101 NO. 7 NUNN AND WANTCHEKON: THE ORIGINS OF MISTRUST IN AFRICA 3231

III. Estimating Equations and Empirical Results
A. OLS Estimates

‘We begin by estimating the relationship between the number of slaves that were
taken from an individual’s ethnic group and the individual’s current level of trust.

Our baseline estimating equation is:

(1) rrust, .4, = o, + Bslave exports, + X, T+ X3 Q2+ X\ ® + £,

= Whaaaaa? Bold letter, quotation marks, what is this?
= Today's goal is to decipher this type of writing
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Multiple Regression in R

nunn <- foreign::read.dta("”../data/Nunn_Wantchekon_AER_2011.dta"
mod <- lm(trust_neighbors ~ exports + age + male + urban_dum

+ malaria_ecology, data = nunn)
summary (mod)

##

## Coefficients:

##t Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.5030370 0.0218325 68.84 <2e-16 **x
## exports -0.0010208 0.0000409 -24.94 <2e-16 **x
## age 0.0050447 0.0004724 10.68 <2e-16 **x
## male 0.0278369 ©0.0138163 2.01 0.044 *
## urban_dum -0.2738719 ©.0143549 -19.08 <2e-16 **x
## malaria_ecology 0.0194106 0.0008712 22.28 <2e-16 **x*
#H -—-

## Signif. codes: @ '#x*' 0.001 'x*' 0.01 'x' .05 '.' 0.1 ' "1
#H#

## Residual standard error: 0.978 on 20319 degrees of freedom
## (1497 observations deleted due to missingness)

## Multiple R-squared: ©0.0604, Adjusted R-squared: 0.0602
## F-statistic: 261 on 5 and 20319 DF, p-value: <2e-16
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Why matrices and vectors?
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Why matrices and vectors?

= Here's one way to write the full multiple regression model:

Yi=Bo+xinBi+xpPot+ - +xp Pty

= Notation is going to get needlessly messy as we add variables.

= Matrices are clean, but they are like a foreign language.
= You need to build intuitions over a long period of time.
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Quick note about interpretation

Yi=PBo+xunB1+xpPo+ - +xpfr+u;

= In this model, B, is the effect of a one-unit change in x;
conditional on all other x;;.

= Jargon “partial effect,” “ceteris paribus,” “all else equal,”
“conditional on the covariates,"” etc

= Notation change: lower-case letters here are random variables.
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1/ Matrix algebra
review



Vectors

= A vector is just list of numbers (or random variables).

= A1 xk row vector has these numbers arranged in a row:
b = [ bl b2 b3 bk ]

= Ak x1 column vector arranges the numbers in a column:

ai

as

Ay

= Convention we'll assume that a vector is column vector and
vectors will be written with lowercase bold lettering (b)
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Vector examples

= Vector of all covariates for a particular unit i:

1
Xi1
X; = | Xi2

Xik
= For the Nunn-Wantchekon data, we might have:
1

exports;

age,

ma|el-
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Matrices

= A matrix is just a rectangular array of numbers.

= We say that a matrix is n x k (“n by k") if it has n rows and k
columns.

= Uppercase bold denotes a matrix:

ailr 412 ot Ak

a a vee a
A= 21 422 ' 2%

dp1 Gpa o Ay

= Generic entry: a;; where this is the entry in row i and column j
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Examples of matrices

= One example of a matrix that we'll use a lot is the design
matrix, which has a column of ones, and then each of the
subsequent columns is each independent variable in the
regression.

1 exports; age, male,

X = 1 exports, age, male,

1 exports, age, male,
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Desigh matrix in R

head(model.matrix(mod), 8)

#it (Intercept) exports age male urban_dum malaria_ecology

## 1 1 855 40 0 0 28.15
## 2 1 855 25 1 0 28.15
## 3 1 855 38 1 1 28.15
## 4 1 855 37 0 1 28.15
## 5 1 855 31 1 0 28.15
## 6 1 855 45 0 0 28.15
## 7 1 855 20 1 0 28.15
## 8 1 855 31 0 0 28.15

dim(model.matrix(mod))

## [1] 20325 6
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2/ Matrix
Operations



Transpose

= The transpose of a matrix A is the matrix created by
switching the rows and columns of the data and is denoted A’.

= kth column of A becomes the kth row of A’:

ap dpp a a a
A= ay ap A’:[ 11 421 a31
djp dpp dzp

azy; dzp

= If Aisnxk, then A will be k x n.
= Also written AT
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Transposing vectors

= Transposing will turn a k x 1 column vector into a 1 x k row
vector and vice versa:

1
Xi1

’
X;=| X x;i=[1 x1 xp - x|

Xik
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Transposing in R

a <- matrix(1:6, ncol = 3, nrow = 2)

a

i (,11 [,2]1 [,3]
## [1,] 1 3 5
## [2,] 2 4 6

#H# [,11 [,2]
#[1,1 1 2
# [2,] 3 4
## [3,] 5 6



Write matrices as vectors

= A matrix is just a collection of vectors (row or column)

= As a row vector:

’
A_[an ajp 413]_[31]
- - /7
dpp Gy a3 a,
with row vectors

/7 7
a; = [ aypp dip d13 ] a = [ dazy dpp dp3 ]
= Or we can define it in terms of column vectors:

byy bia
B=| by by |[=[by by |
by b3

where by and b, represent the columns of B.
= Jj subscripts columns of a matrix: x;
= i and ¢ will be used for rows x;.
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Design matrix

= Design matrix as a series of row vectors:

1 exports;, age; male; X]
1 exports, age, male, X,

., male, X,

1 exports, age
= Design matrix as a series of column vectors:

X:[ 1 X; Xp 0 X ]
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Addition and subtraction

= How do we add or subtract matrices and vectors?

= First, the matrices/vectors need to be comformable, meaning
that the dimensions have to be the same.

= Let A and B both be 2 x 2 matrices. Then, let C = A + B,
where we add each cell together:

[ a a
A+B=| "1 "2 0
| d21 42

by blz}
by by

_| ain+bir app+bpn
| axy + by ax + o

_| €11 ‘€12
€21 €22
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Scalar multiplication

= A scalar is just a single number: you can think of it sort of
like a 1 by 1 matrix.

= When we multiply a scalar by a matrix, we just multiply each
element/cell by that scalar:

bA = p| @1 G2 | _| bxan bxap
i dp bxay bxay
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3/ Linear model in
Matrix form



The linear model with new
notation

= Remember that we wrote the linear model as the following for
all i € {1, ..., n}:
Vi = Bo+x;B1+2iB2 +u;

= Imagine we had an n of 4. We could write out each formula:

yi=Bo+x1By+ziBr+u ( )
Y2 = Bo+ X281 + 2B, +uy (unit 2)
y3 = Bo+x3B1 +23B2+us ( )
Ya = Bo+xsBy+24B2+us ( )
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The linear model with
notation

yi=PBo+x1B1+21B2+u
y2=PBo+x2B1 + 2202 +up
y3 = Po+x301 +23P2 +u3
Ya = Po+X4B1 +24P2 +uy

= We can write this as:

Y1 1 X1
Y2 1 X

= Bo + B+
y3 IR x3 |71
V4 1 X4

= Qutcome is a linear combination of the the x, z, and u vectors

new

<]
22
<3
<4

B+
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Grouping things into matrices

= Can we write this in a more compact form? Yes! Let X and f

be the following:

1 X1

X = 1 Xo
(4x3) 1 x3
1 X4

<]

. Bo
p B =| B

3 (3x1) ﬁ2
24
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Matrix multiplication by a vector

= We can write this more compactly as a matrix
(post-)multiplied by a vector:

1 ] 2
1 X %)

+ + =X
1 | Bo i B i B> =Xp
1 Xq 24

= Multiplication of a matrix by a vector is just the linear
combination of the columns of the matrix with the vector
elements as weights/coefficients.

= And the left-hand side here only uses scalars times vectors,
which is easy!
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General matrix by vector
multiplication

A is a n x k matrix

b is a k x 1 column vector

Columns of A have to match rows of b

Let a; be the jth column of A. Then we can write:
C =Ab=b1a1 +b232+"'+bkak
(nx1)

= ¢ is linear combination of the columns of A
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Back to regression

= X is the n x (k + 1) design matrix of independent variables

B be the (k + 1) x 1 column vector of coefficients.
X B will be n x 1:

XB = Bo+ B1X) + BoXog + - + BiXy

= Thus, we can compactly write the linear model as the
following:

y =X+ u
(nx1)  (nx1) (nx1)

31/64



Inner product

= The inner (or dot) product of a two column vectors a and b
(of equal dimension, k x 1):

<a,b> =a’b= albl arF a2b2 qp ©oo qp akbk

= If a’b = 0 we say that the two vectors are orthogonal.

= With ¢ = Ab, we can write the entries of ¢ as inner products:

C; = al,b

If xl’- is the ith row of X, then we write the linear model as:

Yi = Xf‘ﬁ +U;
= Po+xiB1+xpfo+ -+ Xy Br + U
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4/ OL S in matrix
form



Matrix multiplication

= What if, instead of a column vector b, we have a matrix B
with dimensions k x m.

= How do we do multiplication like so C = AB?

= Each column of the new matrix is just matrix by vector
multiplication:

C=[c; ¢ - ¢,] ¢, = Ab;

= Thus, each column of C is a linear combination of the
columns of A.
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Properties of matrix multiplication

= Matrix multiplication is not commutative: AB # BA

= [t is associative and distributive:

ABC) = (AB)C
AB+C)=AB + AC

= The transpose: (AB)" = B’A’
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Square matrices and the diagonal

= A square matrix has equal numbers of rows and columns.

= The identity matrix, I is a k x k square matrix, with 1s along
the diagonal and Os everywhere else.

0 0
I, = 10
0 1

= The k x k identity matrix multiplied by any m x k matrix
returns the matrix:

S O =

AL = A
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Identity matrix

= To get the diagonal of a matrix in R, use the diag() function:

b <- matrix(1:4, nrow = 2, ncol = 2)

b

it [,11 [,2]
# [0, 1 3
#H 2,1 2 4

diag(b)

#1114

= diag() also creates identity matrices in R:

diag(3)

## [,11 [,2] [,3]
#[,] 1 o o
#[2,1] o 1 o
#[3,] o o 1



Multiple linear regression in matrix

form

= Let ﬁ be the matrix of estimated regression coefficients and y
be the vector of fitted values:

= |t might be helpful to see this again more written out:

1Bo +x11 By +x12B2 + - +x1. By

—Xf = 1/30+x21/31+x22,32+ X B

}A)n 1ﬁ0+xnlﬂl +xn2ﬁ2+"'+xnkﬁk

)

1l

e S D
N =
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Residuals

= We can easily write the residuals in matrix form:
a=y-Xp

= The norm or length of a vector generalizes Euclidean distance
and is just the square root of the squared entries,

_ 2 2 2
lall = a2 + a3 + -+ + a2

= We can write the norm in terms of inner product: [la]*> = a’a

= Thus we can compactly write the sum of the squared residuals

as:
"a

1
=

>

-
ui

Il

~
1l
—
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OLS estimator in matrix form

OLS still minimizes sum of the squared residuals

arg min [a]? = argmin ||y — Xb|?
beRk+1 beRk+1
Take (matrix) derivatives, set equal to 0

Resulting first order conditions:
X'(y-XB)=0
Rearranging:
X'XpB =Xy

In order to isolate B, we need to move the X’X term to the
other side of the equals sign.

We've learned about matrix multiplication, but what about
matrix “division”?
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Scalar inverses

= What is division in its simplest form? 1 is the value such that

al =
= For some algebraic expression: au = b, let's solve for u:
1

—au =
a

b

u =

QI

= Need a matrix version of this: 1.
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Matrix inverses

= Definition If it exists, the inverse of square matrix A, denoted
A1 is the matrix such that A~'A = 1.

= We can use the inverse to solve (systems of) equations:

Au=D>b
A'Au=A"T
Iu=A1p
u=A1p

= |f the inverse exists, we say that A is invertible or nonsingular.
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Back to OLS

= Let's assume, for now, that the inverse of X’X exists (we'll
come back to this)

= Then we can write the OLS estimator as the following:
B = (X'X)"'X'y

= Memorize this: “ex prime ex inverse ex prime y" sear it into
your soul.
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Understanding check

= Supposeyisnx1and Xisnx (k+1).
= What are the dimensions of X’X?
= True/False: X'X is symmetric.

» Note: A square matrix is symmetric if A = A”.

= What are the dimensions of (X’X)_l?
= What are the dimensions of X"y?

= What are the dimensions of 7
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Implications of OLS

= We can generalize some mechanical results about OLS.

= The independent variables are orthogonal to the residuals:

Xua=X(y-XB)=0

= The fitted values are orthogonal to the residuals:

— —

yia=(XB)a=BXu=0
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OLS by hand in R

B = (X'X)"'X'y

= First we need to get the design matrix and the response:

X <- model.matrix(trust_neighbors ~ exports + age + male
+ urban_dum + malaria_ecology, data = nunn)

dim(X)

## [1] 20325 6

## model.frame always puts the response in the first column
y <- model.frame(trust_neighbors ~ exports + age + male
+ urban_dum + malaria_ecology, data = nunn)[,1]

length(y)

## [1] 20325



OLS by hand in R

B =X'X)" X'y

= Use the solve() for inverses and %x% for matrix
multiplication:

solve(t(X) %% X)  %%% t(X) %% y

it (Intercept) exports age male urban_dum
## [1,] 1.503 -0.001021 0.005045 0.02784 -0.2739
#i# malaria_ecology
## [1,] 0.01941

coef (mod)

#i# (Intercept) exports age male
it 1.503037 -0.001021 0.005045 0.027837
#i# urban_dum malaria_ecology
it -0.273872 0.019411
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Intuition for the OLS in matrix form

B =(XX)"'Xy

= What's the intuition here?

= “Numerator” X'y: is roughly composed of the covariances
between the columns of X and y

= “Denominator” X’X is roughly composed of the sample
variances and covariances of variables within X

= Thus, we have something like:

—~

B = (variance of X)~!(covariance of X & y)

= This is a rough sketch and isn't strictly true, but it can
provide intuition.
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5/ OLS inference
N Mmatrix form



Random vectors

= A random vector is a vector of random variables:

x.
X; = [ il ]
Xi2
= Here, x; is a random vector and x;; and x;, are random
variables.

= When we talk about the distribution of x;, we are talking
about the joint distribution of x;; and x;,.
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Distribution of random vectors

= Expectation of random vectors:
Elx;] = [
= Variance of random vectors:

Vix;] = [ Vix;] Cov[x;1,X;] ]

Cov[x;1,x;] Vix;]

= Properties of this variance-covariance matrix:

» if a is constant, then V[a’x;] = a’ V[x;]a.
» if matrix A and vector b are constant, then
V[Axi ar b] = AV[XI']A/
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Most general OLS assumptions

el

Linearity: y; = X/ B + u;

. Random/iid sample: (y;,x;) are a iid sample from the

population.

No perfect collinearity: X is an n x (k + 1) matrix with rank
k+1

Zero conditional mean: E[u;[x;] =0

Homoskedasticity: V[u,lx;] = o2
Normality: u;[x; ~ N (0, o2)
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Matrix rank

= Definition The rank of a matrix is the maximum number of
linearly independent columns.

= Definition The columns of a matrix X are linearly
independent if Xb = 0 if and only if b = 0:

blxl ar b2X2 aF 900 9F kak =0

= Example violation: one column is a linear function of the
others.
» 3 covariates with X; = X, + X3
0=0b1x1 +byx, + b3X3
= b1 (Xy +X3) + brXy + D3X3
= (by + b2)x5 + (by + b3)X3

= _.equals 0 when by = —b, = —b3 ~~ not linearly independent!

53 /64



Rank and matrix inversion

= |f X isnx (k+1) has rank k + 1, then all of its columns are
linearly independent

» Generalization of no perfect collinearity to arbitrary k.

= X has rank k + 1 ~ (X’X) has rank k + 1

= If a square (k + 1) x (k + 1) matrix has rank k£ + 1, then it is
invertible.

= X has rank k + 1 ~» (X’X)~! exists and is unique.
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Zero conditional mean error

= Combining zero mean conditional error and iid we have:

E[ul|X] = E[uiIX,-] =0

= Stacking these into the vector of errors:

E[u,X] 0
E[uX] = ]E["?'X] - ?
E[u,|X] 0

55 /64



Expectation of OLS

= Useful to write OLS as:
B=(XX)"' Xy
= (X'X)"' X/ (XB +u)
= (X'X)"' X Xﬁ + (X'X)”
=B+ (X'X) ' X'u

1
X'u

= Under assumptions 1-4, OLS is conditionally unbiased for f:

E[BIX] = B + (X'X)” X'E[uX]
=B+ (X'X)"' X0
=p

= Implies that OLS is unconditionally unbiased: E[B] = B
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Variance of OLS

= What about V[BX]?

= Using some facts about variances and matrices, can derive:
VIBIX] = (X’X) ' X' V[uX]X (X'X)

= What the covariance matrix of the errors, V[u/X]?

Viu; X] covluy,u,|X] ... covluy,u,|X]
Vu/X] = cov[uzz,ullX] V[u,X] covuy, u,|X]
covlu,,u |X] covlu,, ur|X] ... V[u,|X]

= This matrix is symmetric since cov(u;, u;) = cov(u;, u;)
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Homoskedasicity

= By homoskedasticity and iid, for any units i, s, ¢
» V[w;X] = V[ulx;] = 02 (constant variance)
» cov[u,, u,[X] =0 (uncorrelated errors)

= Then, the covariance matrix of the errors is simply:

2 0 0 ... 0
VIuX] = 021, = 0 o2 0 0

0 0 0 .. o2
= Thus, we have the following:

VIBIX] = (X’X)”' X' V[uX]X (X'X)™"
= (X'X) "' X/ (¢21,)X (X'X) "
=2 (X'X) ' XX (X'X)""
=2 (X'X)"!
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Sampling variance for OLS
estimates

= Under assumptions 1-5, the sampling variance of the OLS
estimator can be written in matrix form as the following:

VIBX] = 02(X'X)"!

= This symmetric matrix looks like this:

V[ﬁdx] COV[EO,B\HX] COV[.B\O,B\HX]
B B\k|X]

COV[B\(),B\”X] V[B\HX] COV[

Cov[Bo. BiX] Cov[Br.BilX] ~  V[BX]
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Inference in the general setting

= Under assumption 1-5 in large samples:

bi- Bi— b ~N(0,1)
se[B;]
= In small samples, under assumptions 1-6,
Bi- b
<05 ] ~ (k1)
J
= Thus, under the null of H : B; = 0, we know that
B;
§é[ﬁ] ~ n—(k+1)
J
= Here, the estimated SEs come from:
VIBl =352(X'X)"!
o u'a

Tu= g k+ 1)
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Covariance matrix in R

= \We can access this estimated covariance matrix, Eﬁ(X’X)*l,

in R:

vcov (mod)

#i#
##
#i#
##
#it
##
##
#i#
##
#i#
##
#i#
##
#i

(Intercept)
(Intercept) 0.0004766593
exports 0.0000001164
age -0.0000079562
male -0.0000667572
urban_dum -0.0000965843
malaria_ecology -0.0000069094

exports

1.164e-07 -7.
1.676e-09 -3.
3.65%-10 2.
7.283e-09 -7.
-4.867e-08 7.
-2.124e-08 2.

urban_dum malaria_ecology

(Intercept) -9.658e-05
exports -4.861e-08
age 7.108e-07
male -1.711e-06
urban_dum 2.061e-04
malaria_ecology 2.724e-09

-6.909e-06
-2.124e-08
2.324e-10
-1.017e-07
2.724e-09
7.590e-07

age
956e-06
659e-10
231e-07
765e-07
108e-07
324e-10

male

.676e-05
.283e-09
.765e-07
.909e-04
.711e-06
.017e-07
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Standard errors from the
covariance matrix

= Note that the diagonal are the variances. So the square root
of the diagonal is are the standard errors:

sqrt(diag(vcov(mod)))

#i# (Intercept) exports age male
it 0.02183253 0.00004094 0.00047237 0.01381627
## urban_dum malaria_ecology
#i#t 0.01435491 0.00087123

coef (summary(mod))[, "Std. Error"]

## (Intercept) exports age male
it 0.02183253 0.00004094 0.00047237 0.01381627
## urban_dum malaria_ecology
it 0.01435491 0.00087123
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Nunn & Wantchekon

VOL. 101 NO. 7 NUNN AND WANTCHEKON: THE ORIGINS OF MISTRUST IN AFRICA 3231

III. Estimating Equations and Empirical Results
A. OLS Estimates
‘We begin by estimating the relationship between the number of slaves that were
taken from an individual’s ethnic group and the individual’s current level of trust.

Our baseline estimating equation is:

(l) sty e g0 = Q, +,BS|!¢2V€ exports, + Xli,e.d.cr + X;'cﬂ + X;‘D + Eiedo
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Wrapping up

= You have the full power of matrices.
= Key to writing the OLS estimator and discussing higher level
concepts in regression and beyond.

= Next week: diagnosing and fixing problems with the linear
model.

64 /64



	Matrix algebra review
	Matrix Operations
	Linear model in matrix form
	OLS in matrix form
	OLS inference in matrix form

