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where are we? where are we going?
Eventually, we will be working with actual data—columns of numbers in a spread-
sheet. We will want to use these numbers in the spreadsheet to learn about the world
and specifically to learn about data that we didn’t collect. For instance, we might have
a column with a sample of respondents’ partisan affiliation, measured on a 1-7 scale.
But if we had drawn a different sample from the population of all citizens, we would
have seen a different set of partisan affiliations. We will use probability to formalize
this uncertainty, which will allow us to use the data we have (our sample) to learn
about the distribution of all citizens (the populations).

list experiments for sensitive questions
• A list experiment is one where we ask respondents to tell us how many items

on a list they agree with, where the contents of the list are randomized across
respondents.

• For instance, perhaps we want to know what proportion of people would be
upset by a black family moving in next door to them. What we would do is the
following.
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• Randomly split the survey into two halves. In the first half, ask respondents
how many of the following upset you:

1. the federal government increasing the tax on gasoline;
2. professional athletes getting million-dollar salaries;
3. large corporations polluting the environment.

• The other half received the same prompt, except with an additional item:

1. the federal government increasing the tax on gasoline;
2. professional athletes getting million-dollar salaries;
3. large corporations polluting the environment;
4. a black family moving in next door.

• It turns out that we can use the answers to these questions to figure out what
proportion of the population would be upset by a black family moving in next
door. But in order to do that, we need to understand random variables.

what are random variables?
A random variable is a numerical summary of an uncertain event. Imagine that we
are calling five people at random and asking them if they support the president and
they each either answer “Yes” or “No.” Before making the calls, we don’t know what
the sequence answers will be—the outcome is uncertain. A random variable some-
how summarizes these outcomes in a single number. For example, we might define a
random variable X to be the number of these respondents that answer “Yes.”

A random variable can be defined for any sample space:

Definition 1. A random variable (r.v.) is a function that maps from the sample space
Ω into the real numbers.

Very simply, random variables are functions that map outcomes of the experi-
ment to numbers. Sometimes this connection is obvious or trivial because the sample
space is already a collection of numbers. Other times, we need to construct random
variables. Why do we need to introduce these functions? Remember that we said
that statistics is the mathematical study of data. In order to use the tools of math to
tackle our questions of interest, we are going to need to work with numerical outputs.
Working with the original sample space might be incredibly difficult and very appli-
cation specific. But once we convert these sample spaces into random variables, we
can see that very different problems might lead to random variables with very similar
properties.
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Examples of random variables

• Coin Flipping Imagine our experiment was tossing a coin 5 times. The se-
quence of outcomes of the flips, ω = HTHTT for example, is not a random
variable because it isn’t a number. But we could make it into a random variable,
X if make it the number of heads in the 5 tosses. Notice how the random vari-
able takes in outcomes from the sample space (HTHTT ) and converts them
into a number, 2.Each sample space can have many different random variables
defined on it. For the coin toss, we could also define a variable to be the number
of tails flips, Y . In this case, these two variables would be related byX = 5−Y .

• Voter Turnout For just one person, the sample space isΩ = {voted,didn’t vote}.
But again these outcomes can be results of a random variable because they are
not numeric. We could define a random variable, X , that converts these out-
comes into numbers (called a Bernoulli or binary random variable):

X =

{
1 if voted
0 if didn’t vote

• Government duration Sometimes the sample space is already numeric so cre-
ating random variables is more obvious. What if our experiment is how long a
government lasts in a parliamentary system? Obviously here the sample space
is the set of nonnegative numbersΩ = [0,∞). Then our randomvariablemight
just be equal to the outcome itself.

We almost always use capital roman letters for the “name” of the random variable
such as X . Here that is just shorthand for the number of heads in 5 coin flips. Ob-
viously when we need to do mathematical operations on the variable, its shorthand
name X will be easier to use. We will refer to a particular value that X might take
with lower case letters, x. So we might write P(X = x) to be the probability that the
number of heads is equal to x. Note that a r.v. is a function, so to be precise, we need
to write X(ω), but we often shorten this to simply X when the underlying sample
space is either clear or not important for the discussion.

probability distributions
It might seem confusing at first that we call these random variables since they deter-
ministically map from the sample space to the real line. Where does the randomness
come from? In a nutshell, uncertainty over outcomes drives uncertainty over ran-
dom variables. The randomness in the example ofX being whether the person voted
or not comes from the randomness of that outcome, not in the mapping of “vote” into
1 and “didn’t vote” into 0.



4

We’ll use probability to formalize the uncertainty overwhat valueX will take. That
is, let P(ω) be the probability of some event (such as P(H) = 0.5). The probability of
some value of X = x is just the probability of the events that would lead to X = x:

PX(X = x) = P({ω ∈ Ω : X(ω) = x})

Let X be the number of heads in two coin flips of a fair coin. Then we can write
out all of the possible outcomes (TT, HT, TH, HH), their probabilities, and the values
that the X would take:

ω P({ω}) X(ω)

TT 1/4 0
HT 1/4 1
TH 1/4 1
HH 1/4 2

x PX(X = x)

0 1/4
1 1/2
2 1/4

Remember that probabilities on the sample space come from a data generating
process (DGP)—assumptions about the physical or social world. Assuming that we
have independent coin flips induces independent probabilities of 0.5 for each coin flip.
Random sampling from a set induces equal probabilities of each object. The DGP,
then, will also induce the probability distribution for the random variable.

distribution functions
The distribution of a r.v. X describes what values of X are more likely than other
values. Above we derived the distribution of simple r.v.s by directly investigating the
underlying sample space. It is cumbersome to derive the probabilities ofX each time
we need them, so it is helpful to have a function that can give us the probability of
values or sets of values of X . The most general of these functions is the cdf.

Definition2. The cumulative distribution functionor cdf of a r.v. X , denotedFX(x),
is defined by:

FX(x) ≡ PX(X ≤ x).

The cdf tells us the probability of a r.v. being less than some given value. For
instance, suppose thatX was the age of a random selected person in the United States.
Then, FX(18) is the probability that this person is 18 or younger, PX(X ≤ 18).

This function completely describes the distribution of a random variable. That is,
if we have two r.v.s, X and Y and their cdfs are the same at every point, x, FX(x) =
FY (x), then they have identical distributions.
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Example: random assignment to treatment

Suppose that we’re running a randomized control trial to see if some intervention
works—maybe we’re random assigning some people to receive GOTV mailer or ran-
domly assigning them to watch negative versus positive ads. Let’s say that we did a
poor job at recruiting subjects so we only have 3 subjects. Here’s our procedure for
randomly assignment: flip a coin for each unit independently and assign those with
heads to Treatment and those with tails to Control. We’ll define X to be the number
of treated units:

X =


0 if (C,C,C)

1 if (T,C,C) or (C, T,C) or (C,C, T )
2 if (T, T, C) or (C, T, T ) or (T,C, T )
3 if (T, T, T )

Wecan use the underlying probabilities of the coin flips to calculate the probability
of each outcome. First note that P(C, T,C) = P(C)P(T )P(C) = 1

2
1
2
1
2 = 1

8 , where
the first equality holds by independence of the coin flips and the second by the fair
coin assumption. Also, note that this is true for any of the outcomes. Thus, we can use
this to determine the cdf for the number of treated units:

FX(x) =



0 x < 0

1/8 0 ≤ x < 1

1/2 1 ≤ x < 2

7/8 2 ≤ x < 3

1 x ≥ 3

We can plot the cdf of this r.v. as:
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Properties of a cdf

The cdf has a few properties that are useful to write out:

1. never decreases (FX(a) ≥ FX(b) if a > b)
2. limits to 0 toward negative infinity, limits to 1 toward positive infinity,
3. right-continuous (no jumps when we approach a point from the right)

Sometimes a cdf will be continuous function, which indicates that the probability
of being less than x is not terribly different than the probability of being less than
x + ε, where ε is some very small number. The cdf of the number of treated units
is obviously not continuous since, for instance, the probability of X being less than
0.9999 (FX(0.999) = 1/8) is very different than the probability of being less than
1.0001 (FX(1.001) = 1/2).

Here’s an example of a continuous cdf:

FX(x) =
1

1 + e−x

Here is what this cdf looks like:
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It is clear from the plot that FX(x) never decreases and that it is continuous (so it
is also right-continuous).

Problem 1. Show that the cdf, FX(x) = (1 + e−x)−1 limits to 0 as x → −∞ and
limits to 1 as x → ∞.
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Calculating probabilities from the cdf

Since the cdf complete determines the distribution of the r.v., it makes sense that we
can use to calculate the probability of any value or set of values that X could take.
Obviously, it can give us the probabilities of intervals like (−∞, b]. From the comple-
ment rule of probability, we can see that Px(X > x) = 1 − FX(x), which gives us
intervals like (a,∞). Putting these together, we can get the probability of any range
of values:

P(a < X ≤ b) = F (b)− F (a)

You can see that this works by using the following equality which we can prove using
the properties of probabilities from last week (noting that the complement of X ≤ a
is X ≥ a):

P(X ≤ b) = P(X ≤ a) + P(X ≥ a ∩X ≤ b)

discrete random variables
Definition 3. A r.v. is discrete if its cdf is a step function, which implies that it only
takes a finite or countably infinite number of values with positive probability.

Countably infinite just means that it takes on any integer and there’s no (obvious)
upper bound to the values that it can take. The most obvious discrete r.v. is the binary
r.v., which can only take on two values: 0 and 1. Defining discrete r.v.s with the cdf
is slightly more technically correct, but defining it in terms of the countability of its
values is more intuitive.

Examples of discrete r.v.s

• Number of Democrats who win election in the Senate
• An indicator of whether two countries go to war
• The number of times a particular word is used in a document

Probability mass function

For a discrete r.v., each possible value of the r.v. has an associated probability of oc-
curring. Go back to our example on voting. For a particular individual, they have
some probability of voting P(X = 1) and some probability of not voting P(X = 0).
But this can generalize as well: we can list out all possible values of the discrete r.v.
and also their associated probabilities. This provides a nice summary of the entire
distribution of the variable.
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Definition 4. The probability mass function for a discrete random variable, X , is
given by

fX(xj) = P(X = x) for all x

Some properties of the pmf fall out of the properties of probability: 0 ≤ fX(x) ≤
1 and

∑k
i=1 fX(xj) = 1. Given this, we can write the cdf of a discrete r.v. as:

FX(x) =
∑
xk≤x

fX(xk),

which is just the sum of the pmf for all values of X less than x.
Clearly, the number of treated units r.v. above is discrete. In fact, we can easily

compute its pmf:

fX(0) = P(X = 0) = P(C,C,C) =
1

8

fX(1) = P(X = 1) = P(T,C,C) + P(C, T,C) + P(C,C, T ) =
3

8

fX(2) = P(X = 2) = P(T, T, C) + P(C, T, T ) + P(T,C, T ) =
3

8

fX(3) = P(X = 3) = P(T, T, T ) =
1

8

• We could plot this pmf using R:
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continuous random variables
Definition 5. A r.v. is continuous if its cdf is continuous, which implies that it can
take on every value in some interval of the real line.
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Continuous variables might take any value between −∞ to ∞ or they might be
positive only or they might be in some interval like [0, 1]. The important part is that
they contain all real numbers in that interval. If so, then there are an uncountably in-
finite number of possible realizations. Note that the variables are only approximately
continuous—that is, they have a very large number of possible realizations and treat-
ing it as continuous is a good approximation.

Examples of continuous random variables

• The length of time between two governments in a parliamentary system
• The proportion of voters who turned out
• Budgets allocations to various government programs

Probability density function

With a continuous r.v., we want to do something similar—describe how likely some
set of outcomes are. We might think to take the same approach as with a discrete
r.v. and just go through each possible value of X and list out its corresponding prob-
ability. This approach breaks down, though, when the number of possible values is
uncountable because the number of possible realizations is massive (there is an infi-
nite number of them in any subset of the real line). This means that we have to take
the probability of any particular realization (for example, 2.32879873 . . .) as 0 and
instead we will work with the probability of X being in some set B.

Definition 6. The probability density function or pdf, fX(x), for a continuous ran-
dom variable X is the function that satisfies:

FX(x) =

∫ x

−∞
fX(t)dt

The pdf of a continuous r.v. can be used to get the probability of any interval on
the real line, B ⊂ R, by simply looking at the area under the pdf for that region:

P(X ∈ B) =

∫
B
fX(x)dx.

In particular, we have the following, when a ≤ b, then we can find the probability of
X being between a and b as:

P(a ≤ X ≤ b) =

∫ b

a
fX(x)dx.
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Based on this definition, every pdf will meet two conditions. First, the pdf will be
nonnegative, so that fX(x) ≥ 0 for all x. Second, the total density must be equal to
1. That is, ∫ ∞

−∞
fX(x)dx = 1

.
The pdf gives us information about how likely various outcomes are. Regions with

higher values of the pdf are areas where we are more likely to see a realization of X .
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But be careful! The height of the curve here, fX(x) is not equal to the probability
of x occurring—remember that is 0 for a continuous variable. To get the probability
thatX will fall in some region, we need to take the integral, which corresponds to the
area under the pdf curve:
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This discussion highlights an important misconception: the pdf, unlike the pmf,
might have values greater than or equal to 1. Intuitively, this is because the height of
curve is not a probability.

properties of distributions
The cdf/pmf/pdf give us all the information about the distribution of some r.v., but
we are quite often interested in some feature of the distribution rather than the entire
distribution. Thus, it is important to think about some properties of distributions that
help summarize them. For instance, if we look at these two distributions, what would
we say is the difference between them:
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As we’ve seen, distributions can be these complicated mathematical expressions
that are hard to interpret. These two distribution have many differences: one is the
probability that each places around -1, another is how much they place around 2, and
so forth.

It would be nice, however, to be able to summarize these distributions quickly so
that we can have an intuitive understanding of where most of the data will be. To
do this, we can think of two features of distribution that are easily quantifiable and
informative: the center of the distribution and the spread of that distribution around
its center.

measures of central tendency - expected value
The central tendency of the distribution is a measure of the “middle” of the distribu-
tion. There are a couple of ways we might think about where the middle is. These
measures are one-number summaries of the distribution in the sense that they repre-
sent our best guess of the value ofX before we see it. The measure of central tendency
wewill focus on in this class is the expected value, which is also called the expectation
or the mean of the distribution. We refer to expected value of X as E[X] or µ.

Motivation - calculating averages

Imaginewehad a bunchof numbers an youwanted to calculate the average: (1,1,3,4,4,5).
Obviously, you would add them up and divide by the number of items in the sum:

1 + 1 + 3 + 4 + 4 + 5

6
=

18

6
3

Now, you could always have calculated that a slightly different way:

1

6
× 1 +

1

6
× 1 +

1

6
× 3 +

1

6
× 4 +

1

6
× 4 +

1

6
× 5

and if we group terms we get:

2

6
× 1 +

1

6
× 3 +

2

6
× 4 +

1

6
× 5

This last expression is another way to calculate the mean: sum up the values in the set,
weighted by their proportion in the set. This form is the exact way that we’ll think of
the mean.
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Definition

As with the distribution, we calculate the expected value differently for discrete and
continuous random variables. For both of them, the expected value is a weighted
average of the realizations weighted by the probability of occurring.

Definition 7. The expected value of a bounded discrete r.v. X is:

E[X] =
k∑

j=1

xjfX(xj).

The expected value of a bounded continuous r.v. X is:

E[X] =

∫ ∞

−∞
xfX(x)dx

Sometimes we will calculate the expectation from the distribution directly using
this definition (like in the next example). Other times, we’ll use some known/given
expectation and then think about how transformation of the r.v. would give different
expectations. Finally, sometimes we will be able to determine the expectation if we
know that the r.v. comes from one of the famous distribution below.

Example - number of treated units

Let’s go back to the number of treated units to figure howmany units we should expect
to be treated in our experiment:

E[X] =

k∑
j=1

xjf(xj) = 0× fX(0) + 1× fX(1) + 2× fX(2) + 3× fX(3)

= 0× 1

8
+ 1× 3

8
+ 2× 3

8
+ 3× 18

= 0 +
3

8
+

6

8
+

3

8
=

12

8
= 1.5

If we look back at the pmf of this distribution, it makes a lot of sense that the answer
would 1.5 since that is in the middle of the distribution. This answer brings up an
interesting feature of the expected value: it doesn’t have to be one of the values that
the r.v. can take.

Properties of the expected value

The expected value has a lot of nice properties that make it easy to work with. Both of
the key properties of expected values are that they are linear. What does that mean?
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• Additivity: (expectation of sums are sums of expectations)

E[X + Y ] = E[X] + E[Y ]

• Homoegeneity: Suppose that a and c are constants. Then,

E[aX + c] = aE[X] + c

• Law of the Unconscious Statistician, or LOTUS. If g(X) is a function of a dis-
crete random variable, then

E[g(X)] =
∑
x

g(x)fX(x),

which basically says that the expected value of the transformation of the random
variable is just the weighted average of the transformed outcomes.

Example: list experiments

• Let’s say that Y is the number of items that people say upset them with the
additional “black family” item and X be the number of items that upset them
with just the 3 baseline items. Then, we could write Y = X +A, whereA = 1
if the black neighbors question upset them and A = 0 it did not.

• Then, we know that E[Y ]− E[X] = E[A], but can you prove that?
• If A is a Bernoulli r.v., then how can we interpret E[A]?

measures of spread
Now we have some sense of where the middle of the distribution is, but we also want
to know how spread out the distribution is around that middle. We’ll talk about two
of these that are closely related: the variance and the standard deviation.

Definition 8. The variance is the average of the squared distances from themean. We
sometimes denote it σ2

X

V[X] = E[(X − E[X])2]

We sometimes denote it σ2
X = V[X]. Since the squared distances are always

nonnegative, the variance is also always nonnegative. If most of the observations are
close to the expected value, then the variance will be closer to 0. If the observations
are far from the expected value, then the variance will be higher.

We can use LOTUS from above to calculate the variance for a discrete random
variable:

V[X] =
∑
x

(x− E[X])2fX(x)
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And we can apply the same principle for continuous random variables:

V[X] =

∫ ∞

−∞
(x− E[X])2fX(x)dx

Definition 9. The standard deviation is just the (positive) square root of the variance:
σX =

√
Var[X].

You can interpret this as the average distance from the expected value of the dis-
tribution. What is nice about this is that it is in the same units as the original variable,
whereas the variance is in squared units. For instance, if X is age, then, σX is also in
years, whereas σ2

X is in years-squared.

Example - number of treated units

Let’s go back to the number of treated units to figure out the variance of the number
of treated units:

V[X] =
k∑

j=1

(xj − E[X])2f(xj)

= (0− 1.5)2 × fX(0) + (1− 1.5)2 × fX(1) + (2− 1.5)2 × fX(2) + (3− 1.5)2 × fX(3)

= (−1.5)2 × 1

8
+ (−0.5)2 × 3

8
+ 0.52 × 3

8
+ 1.52 × 18

= 2.25× 1

8
+ 0.25× 3

8
+ 0.25× 3

8
+ 2.25× 18 = 0.75

Exercise: What’s the standard deviation for this distribution?

Properties of variances

If a and be are constants, then we have the following properties:

• V[b] = 0
• V[aX + b] = a2V[X]

Variances have slightly different properties than expectations, but there are similar
flavors. First, note that the variance of a constant, b, is 0: V[b] = 0. You should use
the definition of the variance to convince yourself why that is the case (hint: what’s
the expected value of a constant?).
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famous distributions
We will use distributions to model some population from which our data is a sample.
That is, we will assume that there is some population-level distribution of ages or sup-
port for the president and that when we see a specific respondent’s age or support for
the president, we are seeing a single draw from this distribution.

But it’s cumbersome to always write out the underlying sample space and then
derive the pdf/pmf from it. More often, we will focus on certain families of distribu-
tions that have a common form of the pdf/pmf up to some parameters, which vary
across the family. Each family has a story for what processes generate a r.v. from that
family. Sometimes, we can match our specific substantive example to these stories to
justify modeling a certain r.v. from a specific family.

Bernoulli

Let X be a binary variable with P(X = 1) = p and, thus, P(X = 0) = 1− p, where
p ∈ [0, 1]. Then we say that X follows a Bernoulli distribution with the following
pmf:

fX(x) = px(1− p)1−x for x ∈ {0, 1}.

There are infinite number of Bernoulli distributions, eachwith a different value p. This
collection of distributions is called the family and p is the parameter that varies across
the family.

Exercise: Let X be a Bernoulli r.v. with P(X = 1) = p. Use the definition of the
expected value to calculate E[X].

Binomial

LetX be the number of heads in n independent coin flips with probability p of heads.
Then X has a binomial distribution written X ∼ Bin(n, p) which has p.m.f.:

fX(x) =

(
n

x

)
px(1− p)n−x

where
(
n
k

)
= n!/(k!(n−k)!)ABinomial r.v.,X is equivalent to the sumofnBernoulli

r.v.s each with probability p. That is, suppose that Z1, . . . , Zn are independent (we’ll
define this formally next week) Bernoulli r.v.s with probability p. Then, you can write

X = Z1 + . . .+ Zn.

The expectation of a Binomial r.v. is E[X] = np and the variance is V[X] =
np(1−p). One example of a Binomial r.v. with n = 3 and p = 0.5 number of treated
units in the RCT example.
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Discrete uniform

• Probably themost famous distribution for a discrete r.v. is the discrete uniform
distribution that puts equal probability on each value that X can take:

fX(x) =

{
1/k for x = 1, . . . , k

0 otherwise

• Note that we can summarize these distributions with one number—with the
discrete distribution it’s the number of possible outcomes andwith theBernoulli
distribution it is probability of variable being 1.

Continuous uniform

Asimple example of a continuous distribution is the continuous uniformdistribution
on the (0, 1) interval is the distribution where the probability of an interval is equal
to one over its length. We write X ∼ Unif(0, 1) and it has the pdf:

fX(x) =

{
1 for x ∈ [0, 1]

0 otherwise

More generally, a r.v. might be uniform over any interval, [a, b], which has the pdf:

fX(x) =


1

b− a
for x ∈ [a, b]

0 otherwise
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Normal distribution

The normal distribution is the classic “bell-shaped” curve. It is extremely useful and
ubiquitous in statistics. If X has a normal distribution, we write X ∼ N(µ, σ2),
where µ is the expected value of the distribution and σ2 is the variance. The pdf for
the Normal distribution is:

fX(x) =
1

σ
√
2π

exp
{
− 1

2σ2
(x− µ)2

}
.

When the mean is 0 and the variance is 1, we call this the standard normal dis-
tribution. The reason this distribution comes up so much is that many things follow
an approximately Normal distribution.
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