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Repeated measurements

I For every week on causal inference, we have identified a
different source of exogenous variation:

I Selection on the observables: as-if randomization
I Instrumental variables: randomized instrument
I RD: discontinuity at the threshold

I Today we’re going to look to another possible source of
variation: repeated measurements on the same unit over time.

I What if selection on the observables doesn’t hold, but do have
repeated measurements. Can we use this to identify and
estimate effects?

I Message: simply having panel data does not identify an effect,
but it does allow us to rely on different identifying assumptions.
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Basic Idea

I The basic idea is that ignorability doesn’t hold, conditional on
the observed covariates, Yit(a) 6 ⊥⊥Ait |Xit , but ignorability
might hold conditional on some unobserved, time-constant,
variable:

Yit(a) ⊥⊥ Ait |Xit ,Ui .

I Within units, effects are identified.
I This is because, even if Ui is unobserved, it is held constant

within a unit.
I Thus, by performing analyses within the units, we can control

for this unobserved heterogeneity.
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Note about terminology

I Generally, we talk about panel data and time-series
cross-sectional data in political science.

I Panel data: small T , large N

I The NES panel is like this: 2000 respondent asked questions at
various points in time over the course of an election (or multiple
elections).

I TSCS data: high T , low medium N.

I U.S. states over time
I Western European countries over time.

I For the most part, the issues of causality are the same for these
two types of data, so I will refer to them both as panel data.

I But estimation is a different issue. Different estimators work
differently under either data types.
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Fixed effects estimators



Notation

I Units i = 1, . . . ,N

I Time periods t = 1, . . . ,T with T ≥ 2,
I Yit , Ait are the outcome and treatment for unit i in period t

We have a set of covariates in each period, as well,
I Covariates Xit , causally “prior” to Ait .

At

Xt

Yt

I Ui = unobserved, time-invariant unit effects (causally prior to
everything)

I History of some variable: Ait = (A1, . . . ,At).
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Basic linear fixed-effects model

I The typical way that we write a fixed effect model is as a linear
regression:

Yit = X ′itβ + τAit + Ui + εit

I Here we focus on contemporaneous effects, τ · Ait
I . . . but could have something more complicated:

= τ1Ait + τ2Ai ,t−1 → much harder
I Key assumptions will be on the relationship between Ui and εit .
I With no lagged dependent variables in Xit , we usually rely on

what is called a strict exogeneity assumption:

E [εit |X iT ,AiT ,Ui ] = 0
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I This combining this with the above regression, we get the
following conditional expectation function:

E [Yit |X iT ,AiT ,Ui ] = X ′itβ + τAit + Ui

I Need to fix one of the unobserved unit effects at U1 = 0 (or fix
the mean at 0), U2, . . . ,UN are parameters/constants.
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Fixed-effects within estimator

I Define the “within” estimator:

(Yit − Y i ) = (Xit − X i )′β + τ(Ait − Ai ) + (εit − εi )

I Here, let Y i be the unit averages. Note that:

Y i = X ′iβ + τAi + Ui + εi

I Logic: since the unobserved effect is constant over time,
subtracting off the mean also subtracts that unobserved effect:

Ui −
1
T

T∑
t=1

Ui = Ui − Ui = 0

I This also demonstrates why the assumption of the fixed effects
being time-constant is so important.
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Fixed-effects within estimator

I Informal proof. We have strict exogeneity:

E [εit |X iT ,AiT ,Ui ] = 0

I This implies exogeneity of the mean-differenced errors:

E [εit − εi |X iT ,AiT ,Ui ] = 0

I Mean-differenced errors are uncorrelated with the treatment or
regressors from any time period.

I Thus, the mean-differenced treatment and covariates must also
be uncorrelated with the mean-differenced errors:

E [Yit − Y i |X iT ,AiT ,Ui ] = (Xit − X i )′β + τ(Ait − Ai )

I OLS and go!

Hidden assumption?
I Full rank: rank[E [(Xit − X i )′(Xit − X i )]] = K
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First differences

I Because the Ui are time-fixed, first-differences are an
alternative to mean-differences.

I For some variable, Zit , let

∆Zit = Zit − Zi ,t−1

I The first difference model is the following:

∆Yit = ∆X ′itβ + τ∆Ait + ∆εit

I This follows from the fact that ∆Ui = 0
I By the same logic as above, we get the following:

E [∆Yit |X iT ,AiT ,Ui ] = ∆X ′itβ + τ∆Ait

I More efficient than regular FE when there is serial correlation
exists in the errors.
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Random effects

I With fixed effects, we made an assumption that

E [εit |X iT ,AiT ,Ui ] = 0]

I “Random effects” models make an additional assumption:

E [Ui |X iT ,AiT ] = E [Ui ] = 0

I That is, random effects models make an additional assumption
about the distribution of unobserved effects.

I Unit-level effects are uncorrelated with treatment and
covariates.

I Important: implies that ignorability holds without conditioning
on Ui , so this is not helping us identify causal effects beyond
typical regressions.
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Why random effects?

I So why do people use random effects? Standard errors!

I Under the RE assumption, we have the following:

Yit = X ′itβ + τAit + νi

where νi = Ui + εit .
I Now, notice that

cov[Yi1,Yi2|X it ,Ait ] = σ2u

where σ2u is the variance of the Ui .
I This violates the assumption of no autocorrelation for OLS.

What’s the problem with this?
I Random effects models gets us consistent standard error

estimates.



Why random effects?

I So why do people use random effects? Standard errors!
I Under the RE assumption, we have the following:

Yit = X ′itβ + τAit + νi

where νi = Ui + εit .

I Now, notice that

cov[Yi1,Yi2|X it ,Ait ] = σ2u

where σ2u is the variance of the Ui .
I This violates the assumption of no autocorrelation for OLS.

What’s the problem with this?
I Random effects models gets us consistent standard error

estimates.



Why random effects?

I So why do people use random effects? Standard errors!
I Under the RE assumption, we have the following:

Yit = X ′itβ + τAit + νi

where νi = Ui + εit .
I Now, notice that

cov[Yi1,Yi2|X it ,Ait ] = σ2u

where σ2u is the variance of the Ui .

I This violates the assumption of no autocorrelation for OLS.
What’s the problem with this?

I Random effects models gets us consistent standard error
estimates.



Why random effects?

I So why do people use random effects? Standard errors!
I Under the RE assumption, we have the following:

Yit = X ′itβ + τAit + νi

where νi = Ui + εit .
I Now, notice that

cov[Yi1,Yi2|X it ,Ait ] = σ2u

where σ2u is the variance of the Ui .
I This violates the assumption of no autocorrelation for OLS.

What’s the problem with this?

I Random effects models gets us consistent standard error
estimates.



Why random effects?

I So why do people use random effects? Standard errors!
I Under the RE assumption, we have the following:

Yit = X ′itβ + τAit + νi

where νi = Ui + εit .
I Now, notice that

cov[Yi1,Yi2|X it ,Ait ] = σ2u

where σ2u is the variance of the Ui .
I This violates the assumption of no autocorrelation for OLS.

What’s the problem with this?
I Random effects models gets us consistent standard error

estimates.



Lagged dependent variables

I Strict exogeneity is quite strong.

I Example: economic interdependence between countries
(Ait = 1 if county-dyad i is interdependent in period t) and
conflict severity (Yit) between countries.

I Strict exogeneity assumption implies shocks to conflict severity
at t uncorrelated with:

I future values of conflict severity
I economic interdendence
I any other time-varying covariate

I Rules out lagged dependent variables. Why? Informally:

I Let Yi,t−1 ∈ Xit .
I By strict exogeneity, εit uncorrelated with Xi,t+1
I Implies that εit uncorrelated with Yit , but this can’t be since it

is the error for that variable!
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LDVs and exogeneity
I Weaker assumption: errors uncorrelated with past values,

which we call sequential exogeneity:

E [εit |X it ,Ait ,Ui ] = 0.

I But this doesn’t identify our parameters. To see this, imagine
the LDV is the only covariate and we’re using first differences:

(Yit−Yi ,t−1) = β(Yi ,t−1−Yi ,t−2)+τ(Ait−Ai ,t−1)+(εit−εi ,t−1)

I Obviously, Yi ,t−1 is correlated with the εi ,t−1.
I This is sometimes called a dynamic panel model, where we

can’t rely on the exogeneity assumption alone. We need an
instrument.

I Conveniently, Yi ,t−2 is a good instrument:

I correlated with (Yi,t−1 − Yi,t−2)
I unrelated to the error (εit − εi,t−1)

I Dynamic panel literature full of examples of how to use
different IV approaches
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Heterogeneous treatment effects



Potential outcomes in the general setting

I Let Yit(1) be the potential outcome when a person gets
treatment at time t. Similarly for Yit(0).

I τit = Yit(1)− Yit(0)
I Consistency:

Yit = AitYit(1) + (1− Ait)Yit(0)

I Which implies the following:

Yit = E [Yit(0)|X iT ,Ui ] + Aitτit + Yit(0)− E [Yit(0)|X iT ,Ui ]

I Here, X it might include lags of Ait as well.
I Get us even closer, note we can do the following:

Aiτit = Aitτc + Ait(τit − τc)

where τc = E [τit ] is the ATE.
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Putting it all together

I Finally, let’s assume that the mean of the potential outcome
under control is linear:

E [Yit(0)|X iT ,Ui ] = Xijβc + Ui

I Combing these facts, we get:

Yit = Xijβc + Ui + Aitτc + ηit

I Where the combined error is:

ηit = Ait(τit − τc)︸ ︷︷ ︸
non-constant effects

+ Yit(0)− E [Yit(0)|X iT ,Ui ]︸ ︷︷ ︸
typical errors

I When will τc = τ from the fixed effects regression models
above?
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Assumptions

I Let’s make a strict ignorability assumption conditional on Ui :

Yit(a) ⊥⊥ Ait |{X iT \ Ait},Ui

I Very strong assumption: basically that Ait is randomized within
unit-periods, with no feedback.

I Does this imply the strict exogeneity assumption on our
combined error?

E [ηit |X iT ,Ui ,Ait ] = 0

I Let’s find out!
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Errors

I Remember the decomposition:

ηit = Ait(τit − τc)︸ ︷︷ ︸
non-constant effects

+ Yit(0)− E [Yit(0)|X iT ,Ui ]︸ ︷︷ ︸
typical errors

I Let’s take the “typical errors” first:

E [(Yit(0)− E [Yit(0)|X iT ,Ui ]) |X iT ,Ui ,Ait ]

= E [Yit(0)|X iT ,Ui ,Ait ]− E [Yit(0)|X iT ,Ui ]
= E [Yit(0)|X iT ,Ui ]− E [Yit(0)|X iT ,Ui ]
= 0

I Great, the “typical errors” are 0 on average under our strict
ignorability assumption.
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Non-constant effects errors

I What about the non-constant effects part?
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= Ait(E [τit |X iT ,Ui ,Ait ]− τc)
= Ait(E [τit |X iT ,Ui ]− τc)
= Ait(E [τit |X iT ,Ui ]− E [τit ])

I Thus, we can see that the combined error will only satisfy the
strict exogeneity assumption of fixed effects when

E [τit |X iT ,Ui ] = E [τit ]

I This is when the treatment effects are independent of the unit
effects and the covariates.
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Regression bias?

I We’ve seen this before: it’s a general problem with regression
and varying treatment effects.

ηit = Ait(τit − τc)︸ ︷︷ ︸
non-constant effects

+ Yit(0)− E [Yit(0)|X iT ,Ui ]︸ ︷︷ ︸
typical errors

I Generally the issue here is that non-constant effects induce
correlation between the treatment and the error term.

I Distinct from confounding bias since we could, in principle,
estimate E [τit |X iT ,Ui ] to then calculate E [τit ]

I Overall ATE still nonparametrically identified, even if the FE
regression doesn’t estimate it.
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Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:

I Ait affects Yit which then affects Ai,t+1
I Basically, any feedback between treatment and the outcome

I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:

I Ait affects Yit which then affects Ai,t+1
I Basically, any feedback between treatment and the outcome

I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:
I Ait affects Yit which then affects Ai,t+1

I Basically, any feedback between treatment and the outcome
I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:
I Ait affects Yit which then affects Ai,t+1
I Basically, any feedback between treatment and the outcome

I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:
I Ait affects Yit which then affects Ai,t+1
I Basically, any feedback between treatment and the outcome

I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:
I Ait affects Yit which then affects Ai,t+1
I Basically, any feedback between treatment and the outcome

I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Strict exogeneity/ignorability

I We’ve needed strict exogeneity to derive many of these results,
but this is very restrictive.

I Rules out the following:
I Ait affects Yit which then affects Ai,t+1
I Basically, any feedback between treatment and the outcome

I Can we weaken this? Yes! Sequential ignorability:

E [εit |X it ,Ait ,Ui ] = 0

I Note here that the we only condition up to t so that the errors
can be correlated with future Ai ,t+1 and so on.

I Estimation here gets more difficult (see Wooldridge, 2002,
11.2)



Contemporaneous vs Cumulative effects

I Another assumption we’ve been making is that there is only a
contemporaneous effect: τAit .

I Implicitly or explicitly fixing the past history of the treatment.
I What if we want to estimate the cumulative effects?
I Very difficult, if not impossible with fixed effects models.
I Why?

I For cumulative effects, we need to consider the effects of
treatment on time-varying confounders, Xit(ai,t−1).

I Those pathways might be hard to identify

I We would just need more assumptions
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Basic differences-in-differences model



Setup

I Basic setup: two groups, two time periods.

I At t = 0, neither group is treated and in period t = 1, one
(and only one) of the groups is treated.

I Differences: changes in treated group from t = 0 to t = 1

I Problem: Might be secular changes in the outcome

I Differences in differences (diff-in-diff, DID, DD): difference
between t = 1 to t = 2 changes in treatment and control
groups

I Resolution: changes in the control group identifies the secular
trend

I Examples:

I Minimum wage changes in NJ with PA as control (Card and
Krueger)

I Effect of artillery shelling on insurgent attacks (Lyall)
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Constant effects linear DID model

I Focus on fixed effect setup with two periods, pretreatment
(t = 0) and posttreatment (t = 1)

I By design, we have Ai0 = 0 for all i
I Start with linear models, then move to potential outcomes
I The specific model we will assume is this:

Yit = δt + τAit + αi + ηit

I Here we have a period effect, δt and a unit effect αi , and a
transitory shock, ηit , which has mean zero.
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Common trends

I Without further assumptions, τ not identified because Ai1
might be correlated with shocks.

Pr[Ai1 = 1|ηi0, ηi1] = Pr[Ai1 = 1]

I Errors are also independent of the treatment, so that ηi1 − ηi0
is independent of Ait .

I Specifically, this means treated and control groups have the
same trends in the error (on average)
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Common trends in a graph
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Identification

I With this assumption, we can rewrite the above model as the
following:

Yit = µ+ δ · t + γAi1 + τAit + εit

I The parameters are the following:

δ = (δ1 − δ0) (time trend)

µ = E [αi |Ai1 = 0] + δ0 (control start)
γ = E [αi |Ai1 = 1]− E [αi |Ai1 = 0] (baseline difference)
εit = αi − E [αi |Ai1] + ηit (new error)
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I Using the above assumption, we can show that the treatment
is independent of the error in this model:

E [εit |Ai1,Ai0] = E [εit |Ai1]

= E [(αi − E [αi |Ai1] + ηit)|Ai1]
= E [αi |Ai1]− E [E [αi |Ai1]|Ai1] + E [ηit |Ai1]
= E [ηit |Ai1]
= E [ηit ] = 0

I Note that we have this even though we have made no
assumptions on the distribution of the unit-specific effects and
their relation to the treatment.

I Just assumed that control and treatment have the same
average secular trends
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I Now, we can investigate how two differences here. First, the
time trend for the untreated:

E [Yi1|Ai1 = 0]− E [Yi0|Ai1 = 0] = δ

I And now the trend for the treated group:

E [Yi1|Ai1 = 1]− E [Yi0|Ai1 = 1] = δ + τ

I Therefore:

(E [Yi1|Ai1 = 1]− E [Yi0|Ai1 = 1])
− (E [Yi1|Ai1 = 0]− E [Yi0|Ai1 = 0]) = τ

I This motivates the differences-in-differences estimator as the
difference between these two differences. We can estimate each
of these CEFs from the data and compute their sample versions
to get an estimate of τ .
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Estimation
I For the two period, binary treatment case, a regression of the

outcome on time (pre-treatment, post-treatment), treated
group, and their interaction can estimate τ :

Yit = µ+ δ · t + γAi1 + τAi1 · t + εit

I τ̂ would be the coefficient on the interaction between time and
the treatment.

I This is for two cross-sections.
I If we have panel data, then we can estimate this in a different,

more direct way. Note that:

τ = E [Yi1 − Yi0|Ai1 = 1]− E [Yi1 − Yi0|Ai1 = 0]

I Thus, in the panel data case, we can estimate the effect by
regressing the change for each unit, Yi1 − Yi0, on the
treatment.
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Threats to identification

I Obviously, the treatment needs to be independent of the
idiosyncratic shocks so that the variation of the outcome is the
same for the treated and control groups, but this might not be
plausible.

I Ashenfelter’s dip: which is a empirical finding that people who
enroll in job training programs see their earnings decline prior
to that training.

I In the Lyall paper, it might be the case that insurgent attacks
might be falling in places where there is shelling because rebels
attacked in those areas and have moved on.

I Thus, the independence of the treatment and idiosyncratic
shocks might only hold conditional on covariates.
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Regression DD

I Sometimes key assumption only holds conditional on Xi .

I Can incorporate those with a regression DID, which includes
covariates in a linear, additive manner:

Yit = µ+ X ′i βt + δt + γAi1 + τAit + εit

I If we have repeated observations, we can take the differences
between t = 0 and t = 1:

Yi1 − Yi0 = δ + X ′i β + τ(Ai1 − Ai0) + (εi1 − εi0)

I Here, we have β = β1 − β0. Further note that because
everyone is untreated in the first period, Ai1 − Ai0 = Ai1.

I As usual, for panel data, regress changes on treatment.
I This approach depends on constant effects and linearity in Xi .

Can we generalize?
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Robustness checks

I Lags and Leads

I if Ait causes Yit , and not the other way around, then current
and lagged values of Ait should have an effect on Yit , but future
values of Ait should not.

I Include lags Ai,t−1,Ai,t−1 etc and leads Ai,t+1,Ai,t+2 in the
model and see if pattern holds.

I Time trends
I With T > 2, we can add unit-specific linear trends to the

regression DID model:

Yit = δt + τAit + α0i + α1i · t + ηit

I Helps detect if there really are varying trends, if estimated from
pre-treatment data.

I Synthetic control matching leverages this type of idea
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Potential outcomes approach to DID
I Parametric models aren’t cool. You what’s cool?

Nonparametric identification.

I Let Yit(a) be the potential outcome under treatment a at time
t.

I Again, the individual causal effect is just Yit(1)− Yit(0).
I Because no one is treated at time t = 0, we have

I Ai1 = Ai
I Yi0(0) = Yi0
I Yi1 = AiYi1(1) + (1− Ai )Yi1(0)

I We’ll focus on two estimands, the ATT,

τATT = E [Yit(1)− Yit(0)|Ai = 1]

and the conditional ATT:

τATT (x) = E [Yit(1)− Yit(0)|Xi = x ,Ai = 1]

.
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Nonparametric identification
I Let’s make the crucial identifying assumption of a DID model:

E [Yi1(0)− Yi0(0)|Xi ,Ai = 1] = E [Yi1(0)− Yi0(0)|Xi ,Ai = 0]

I What does this assumption say? It says that the potential
trend under control is the same for the control and treated
groups, conditional on covariates.

I Just parallel trends in terms of potential outcomes.
I Note that, if the two groups have the same mean potential

outcome under control in the first period,

E [Yi0(0)|Xi ,Ai = 1] = E [Yi0(0)|Xi ,Ai = 0]

then this assumption just becomes regular ignorability:

E [Yi1(1)|Xi ,Ai = 1] = E [Yi1(1)|Xi ,Ai = 0]
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I We can show that this is the key assumption for identifying the
DID approach:

E [Yi1(1)− Yi1(0)|Xi , Ai = 1]
=E [Yi1(1)− Yi0(0) + Yi0(0)− Yi1(0)|Xi , Ai = 1]

= (E [Yi1(1)|Xi , Ai = 1]− E [Yi0(0)|Xi , Ai = 1])− (E [Yi1(0)− Yi0(0)|Xi , Ai = 1])
= (E [Yi1(1)|Xi , Ai = 1]− E [Yi0|Xi , Ai = 1])− (E [Yi1(0)− Yi0(0)|Xi , Ai = 0])
= (E [Yi1|Xi , Ai = 1]− E [Yi0|Xi , Ai = 1])− (E [Yi1(0)|Xi , Ai = 0]− E [Yi0(0)|Xi , Ai = 0])
= (E [Yi1|Xi , Ai = 1]− E [Yi0|Xi , Ai = 1])︸ ︷︷ ︸

differences for Ai =1

− (E [Yi1|Xi , Ai = 0]− E [Yi0|Xi , Ai = 0])︸ ︷︷ ︸
differences for Ai =0

I Very similar to results above.
I Each CEF could be estimated nonparametrically, but we would

run into the curse of dimensionality if Xi is complicated
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Nonparametric DID notes

I Note what is powerful here: no ignorability assumption.

I Relies only on parallel trends assumption.
I Parallel trends might be more plausible when treatment and

control are similar
I Also, parallel trends assumption may not hold for

transformations of the data.
I Nonparametrics will hard with moderately-sized covariate space
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Semiparametric estimation with repeated outcomes
I Abadie (2005) on how to use weighting estimators to help with

estimation.

I Basically, we are going to weight the treated and control
groups so that they are balanced on the covariates.

I Recover the “hidden” balanced experiment.

E [Yi1(1)− Yi1(0)|Xi , Ai = 1] = E
[Ai (Yi1 − Yi0)
Pr[Ai = 1|Xi ]

−
(1− Ai )(Yi1 − Yi0)
1− Pr[Ai = 1|Xi ]

∣∣∣Xi

]

I The tradeoff here is that we have to estimate the propensity
score to estimate these weights for each unit:

ρ0(Ai ,Xi ) = Ai − Pr[Ai = 1|Xi ]
Pr[Ai = 1|Xi ](1− Pr[Ai = 1|Xi ])
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How weighting works

I Intuitively, weighting is very similar to survey weights.

I If the data were perfectly balanced on the covariates, we
wouldn’t need to control for them.

I We want to weight the “sample” to be similar
to/representative of that balanced “population”

I This is a general technique, not limited to DID.
I Weights for treated units are: 1

Pr[Ai =1|Xi ]
I Weights for control units are: 1

Pr[Ai =0|Xi ]
I Sometimes called “inverse probability of treatment weighting”

(IPTW)
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Proof

I The proof is actually quite straightforward:

E [ρ0(Yi1 − Yi0)|Xi ] = E [ρ0(Ai ,Xi )(Yi1 − Yi0)|Xi ,Ai = 1] Pr[Ai = 1|Xi ]
+ E [ρ0(Ai ,Xi )(Yi1 − Yi0)|Xi ,Ai = 0] Pr[Ai = 0|Xi ]

= E
[

1
Pr[Ai = 1|Xi ]

(Yi1 − Yi0)
∣∣∣Xi ,Ai = 1

]
Pr[Ai = 1|Xi ]

+ E
[

1
Pr[Ai = 0|Xi ]

(Yi1 − Yi0)
∣∣∣Xi ,Ai = 0

]
Pr[Ai = 0|Xi ]

=E [Yi1 − Yi0|Xi ,Ai = 1]− E [Yi1 − Yi0|Xi ,Ai = 0]
=E [Yi1(1)− Yi0(1)|Xi ,Ai = 1]− E [Yi1(0)− Yi0(0)|Xi ,Ai = 0]
=E [Yi1(1)− Yi1(0)|Xi ,Ai = 1]− E [Yi0(1)− Yi0(0)|Xi ,Ai = 1]
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