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Introduction

I Causal for us so far: selection of observables, instrumental
variables for when this doesn’t hold

I Basic idea behind both: find some plausibly exogeneous
variation in the treatment assignment

I Selection on observables: treatment as-if random conditional
on Xi

I IV: instrument provides exogeneous variation
I Regression Discontinuity: exogeneous variation from a

discontinuity in treatment assignment
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Sharp Regression Discontinuity Designs



Setup

I The basic idea behind regression discontinuity designs is that
we have a variable, Xi , that we call the forcing variable,
which determines (partly or wholly) the treatment assignment
on either side of a fixed threshold.

I This variable may or may not be related to the potential
outcomes, but we assume that relationship is smooth, so that
changes in the outcome around the threshold can be
interpretted as a causal effect.

I The classic example of this is in the educational context:

I Scholarships allocated based on a test score threshold
(Thistlethwaite and Campbell, 1960)

I Class size on test scores using total student thresholds to create
new classes (Angrist and Lavy, 1999)
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Notation

I Treatment: Ai = 1 or Ai = 0

I Potential outcomes, Yi(1) and Yi(0)
I Observed outcomes:

Yi = Yi(1)Ai + Yi(0)(1− Ai)

I Forcing variable: Xi ∈ R
I Covariates: an M-length vector Zi = (Z1i , . . . ,ZMi)
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Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship

I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship

I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)

I At the threshold, c, we only see treated units and below the
threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Design

I In a sharp RD design, the treatment assignment is a
deterministic function of the forcing variable and the threshold,
c so that:

Assumption SRD

Ai = 1{Xi ≥ c} ∀i

I When test scores are above 1500 → offered scholarship
I When test scores are below 1500 → not offered scholarship
I Key assumption: no compliance problems (deterministic)
I At the threshold, c, we only see treated units and below the

threshold c − ε, we only see control values:

P(Ai = 1|Xi = c) = 1
P(Ai = 1|Xi = c − ε) = 0



Threshold

I Intuitively, we are interested in the discontinuity in the outcome
at the discontinuity in the treatment assignment.

I We want to investigate the behavior of the outcome around the
threshold:

lim
x↓c

E [Yi |Xi = x ]− lim
x↑c

E [Yi |Xi = x ]

I Under certain assumptions, this quantity identifies the ATE at
the threshold:

τSRD = E [Yi(1)− Yi(0)|Xi = c]
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Plotting the RDD (Imbens and Lemieux, 2008)



Comparison to traditional setup

I Note that ignorability here hold by design, because condition
on the forcing variable, the treatment is deterministic.

Yi(1),Yi(0) ⊥⊥ Ai |Xi

I Again, we can’t directly use this because we know that the
usual posivity assumption is violated. Remember that positivity
is an overlap condition:

0 < Pr[Ai = 1|Xi = x ] < 1

I Here, obviously, the propensity score is only 0 or 1, depending
on the value of the forcing variable.

I Thus, we need to extrapolate from the treated to the control
group and vice versa.



Comparison to traditional setup

I Note that ignorability here hold by design, because condition
on the forcing variable, the treatment is deterministic.

Yi(1),Yi(0) ⊥⊥ Ai |Xi

I Again, we can’t directly use this because we know that the
usual posivity assumption is violated. Remember that positivity
is an overlap condition:

0 < Pr[Ai = 1|Xi = x ] < 1

I Here, obviously, the propensity score is only 0 or 1, depending
on the value of the forcing variable.

I Thus, we need to extrapolate from the treated to the control
group and vice versa.



Comparison to traditional setup

I Note that ignorability here hold by design, because condition
on the forcing variable, the treatment is deterministic.

Yi(1),Yi(0) ⊥⊥ Ai |Xi

I Again, we can’t directly use this because we know that the
usual posivity assumption is violated. Remember that positivity
is an overlap condition:

0 < Pr[Ai = 1|Xi = x ] < 1

I Here, obviously, the propensity score is only 0 or 1, depending
on the value of the forcing variable.

I Thus, we need to extrapolate from the treated to the control
group and vice versa.



Comparison to traditional setup

I Note that ignorability here hold by design, because condition
on the forcing variable, the treatment is deterministic.

Yi(1),Yi(0) ⊥⊥ Ai |Xi

I Again, we can’t directly use this because we know that the
usual posivity assumption is violated. Remember that positivity
is an overlap condition:

0 < Pr[Ai = 1|Xi = x ] < 1

I Here, obviously, the propensity score is only 0 or 1, depending
on the value of the forcing variable.

I Thus, we need to extrapolate from the treated to the control
group and vice versa.



Extrapolation and smoothness

I Remember the quantity of interest here is the effect at the
threshold:

τSRD = E [Yi(1)− Yi(0)|Xi = c]
= E [Yi(1)|Xi = c]− E [Yi(0)|Xi = c]

I But we don’t observe E [Yi(0)|Xi = c] ever due to the design,
so we’re going to extrapolate from E [Yi(0)|Xi = c − ε].

I Extrapolation, even at short distances, requires a certain
smoothness in the functions we are extrapolating.
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Continuity of the CEFs
Assumption 1: Continuity
The functions

E [Yi(0)|Xi = x ] and E [Yi(1)|Xi = x ]

are continuous in x .

I This continuity implies the following:

E [Yi(0)|Xi = c] = lim
x↑c

E [Yi(0)|Xi = x ] (continuity)

= lim
x↑c

E [Yi(0)|Ai = 0,Xi = x ] (SRD)

= lim
x↑c

E [Yi |Xi = x ] (consistency/SRD)

I Note that this is the same for the treated group:

E [Yi(1)|Xi = c] = lim
x↓c

E [Yi |Xi = x ]
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Identification results

I Thus, under the ignorability assumption, the sharp RD
assumption, and the continuity assumption, we have:

τSRD = E [Yi(1)− Yi(0)|Xi = c]

= E [Yi(1)|Xi = c]− E [Yi(0)|Xi = c]
= lim

x↓c
E [Yi |Xi = x ]− lim

x↑c
E [Yi |Xi = x ]

I Note that each of these is identified at least with infinite data,
as long as Xi has positive density around the cutpoint

I Why? With arbitrarily high N, we’ll get an arbitrarily good
approximations to the expectation of the line

I How to estimate these nonparametrically is difficult as we’ll see
(endpoints are a big problem)
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What can go wrong?

I If the potential outcomes change at the discontinuity for
reasons other than the treatment, then smoothness will be
violated.

I For instance, if people sort around threshold, then you might
get jumps other than the one you care about.

I If things other than the treatment change at the threshold,
then that might cause discontinuities in the potential outcomes.
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Estimation in the SRD



Graphical approaches
I Simple plot of mean outcomes within bins of the forcing

variable:

Y k = 1
Nk

N∑
i=1

Yi · I(bk < Xi ≤ bk+1)

where Nk is the number of units within bin k and bk are the
bin cutpoints.

I Obvious discontinuity at the threshold?
I Are there other, unexplained discontinuities?
I As Imbens and Lemieux say:

The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.



Graphical approaches
I Simple plot of mean outcomes within bins of the forcing

variable:

Y k = 1
Nk

N∑
i=1

Yi · I(bk < Xi ≤ bk+1)

where Nk is the number of units within bin k and bk are the
bin cutpoints.

I Obvious discontinuity at the threshold?

I Are there other, unexplained discontinuities?
I As Imbens and Lemieux say:

The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.



Graphical approaches
I Simple plot of mean outcomes within bins of the forcing

variable:

Y k = 1
Nk

N∑
i=1

Yi · I(bk < Xi ≤ bk+1)

where Nk is the number of units within bin k and bk are the
bin cutpoints.

I Obvious discontinuity at the threshold?
I Are there other, unexplained discontinuities?

I As Imbens and Lemieux say:

The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.



Graphical approaches
I Simple plot of mean outcomes within bins of the forcing

variable:

Y k = 1
Nk

N∑
i=1

Yi · I(bk < Xi ≤ bk+1)

where Nk is the number of units within bin k and bk are the
bin cutpoints.

I Obvious discontinuity at the threshold?
I Are there other, unexplained discontinuities?
I As Imbens and Lemieux say:

The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.



Graphical approaches
I Simple plot of mean outcomes within bins of the forcing

variable:

Y k = 1
Nk

N∑
i=1

Yi · I(bk < Xi ≤ bk+1)

where Nk is the number of units within bin k and bk are the
bin cutpoints.

I Obvious discontinuity at the threshold?
I Are there other, unexplained discontinuities?
I As Imbens and Lemieux say:

The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.



Example from RD on extending unemployment



Other graphs to include

I Next, it’s a good idea to plot covariates by the forcing variable
to see if these covariates also jump at the discontinuity.

I Same binning strategy:

Z km = 1
Nk

N∑
i=1

Zim · I(bk < Xi ≤ bk+1)

I Intuition: our key assumption is that the potential outcomes
are smooth in the forcing variable.

I Discontinuities in covariates unaffected by the threshold could
be indications of discontinuities in the potential outcomes.

I Similar to balance tests in matching
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Checking covariates at the discontinuity



General estimation strategy

I The main goal in RD is to estimate the limits of various CEFs
such as:

lim
x↑c

E [Yi |Xi = x ]

I It turns out that this is a hard problem because we want to
estimate the regression at a single point and that point is a
boundary point.

I As a result, the usual kinds of nonparametric estimators
perform poorly.

I In general, we are going to have to choose some way of
estimating the regression functions around the cutpoint.

I Using the entire sample on either side will obviously lead to
bias because those values that are far from the cutpoint are
clearly different than those nearer to the cutpoint.

I → restrict our estimation to units close to the threshold.
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Nonparametric and semiparametric approaches

I Let’s define
µR(x) = lim

z↓x
E [Yi(1)|Xi = z ]

µL(x) = lim
z↑x

E [Yi(0)|Xi = z ]

I For the SRD, we have τSRD = µ1(x)− µ0(x).
I One nonparametric approach is to estimate nonparametrically
µL(x) with a uniform kernel:

µ̂L(c) =
∑N

i=1 Yi · I{c − h ≤ Xi < c}∑N
i=1 I{c − h ≤ Xi < c}

I Here, h is a bandwidth parameter, selected by you.
I Basically, calculate means among units no more than h away

from the threshold.
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Local averages

I Estimate mean of Yi when Xi ∈ [c, c + h] and when
Xi ∈ [c − h, c).

I Can do this with the following approach regression on those
units less than h away from c:

(α̂, τ̂) = argmin
α,τ

∑
i :Xi∈[c−h,c+h]

(Yi − α− τAi)2

I Here, τ̂SRD = τ̂ .
I This turns out to have very large bias as the we increase the

bandwidth.
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Local linear regression

I Instead of a local constant, we can use a local linear regression.

I Run a linear regression of Yi on Xi − c in the group
Xi ∈ [c, c + h] to estimate µ1(x) and the same regression for
group with Xi ∈ [c − h, c):

(α̂L, β̂L) = argmin
α,β

∑
i :Xi∈[c−h,c)

(Yi − α− β(Xi − c))2

(α̂R , β̂R) = argmin
α,β

∑
i :Xi∈[c,c+h]

(Yi − α− β(Xi − c))2

I Our estimate is

τ̂SRD = µ̂R(c)− µ̂L(c)
= α̂R + β̂R(c − c)− α̂L − β̂L(c − c)
= α̂R − α̂L
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More practical estimation

I We can estimate this local linear regression by dropping
observations more than h away from c and then running the
following regression:

Yi = α+ β(Xi − c) + τAi + γ(Xi − c)Ai + ηi

I Here we just have an interaction term between the treatment
status and the forcing variable.

I Here, τ̂SRD = τ̂ which is the coefficient on the treatment.
I Yields numerically the same as the separate regressions.
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Odds and ends for the SRD

I Standard errors: robust standard errors from local OLS are
valid.

I Covariates: shouldn’t matter, but can include them for
increased precision.

I ALWAYS REPORT MODELS WITHOUT COVARIATES
FIRST

I You can include polynomials of the forcing variable in the local
regression. Let X̃i = Xi − c

Yi = α+ β1X̃i + β2X̃ 2
i + τAi + γ1X̃iAi + γ2X̃ 2

i Ai + ηi

I Make sure that your effects aren’t dependent on the polynomial
choice.
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Bandwidth selection

I The choice of bandwidth is fairly important here and we want
it to be smaller as N grows.

I In general, we can use cross-validation techniques to choose
the optimal bandwidth.

I See Imbens and Kalyanaraman (2012) for optimal bandwidth
selection.
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Fuzzy Regression Discontinuity Designs



Setup

I With fuzzy RD, the treatment assignment is no longer a
deterministic function of the forcing variable, but there is still a
discontinuity in the probability of treatment at the threshold:

Assumption FRD

lim
x↓c

Pr[Ai = 1|Xi = x ] 6= lim
x↑c

Pr[Ai = 1|Xi = x ]

I In the sharp RD, this is also true, but it further requried the
jump in probability to be from 0 to 1.

I Fuzzy RD is often useful when the a threshold encourages
participation in program, but does not actually force units to
participate.
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Fuzzy RD in a graph



Fuzzy RD is IV

I Forcing variable is an instrument:

I affects Yi , but only through Ai (at the threshold)
I Let Ai(x) be the potential value of treatment when we set the

forcing variable to x , for some small neighborhood around c.
I Ai(x) = 1 if unit i would take treatment when Xi was x
I Ai(x) = 0 if unit i would take control when Xi was x
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Fuzzy RD assumptions

Assumption 2: Monotoncity
There exists ε such that Ai(c + e) ≥ Ai(c − e) for all 0 < e < ε

I Increasing the forcing variable doesn’t encourage people to take
the treatment

Assumption 3: Local Exogeneity of Forcing Variable
In a neighborhood of c,

{τi ,Ai(x)} ⊥⊥ Xi

I Basically, in an ε-ball around c , the forcing variable is randomly
assigned.
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Compliance in Fuzzy RDs

I Compliers are those i such that for all 0 < e < ε:

Ai(c + e) = 1 and Ai(c − e) = 0

I Think about college students that get above a certain GPA are
encouraged to apply to grad school.

I Compliers would:

I apply to grad school if their GPA was just above the threshold
I not apply to grad school if their GPA was just below the

threshold

I We don’t get to see their compliance status because due to the
fundamental problem of causal inference

I Could also think about this as changing the threshold instead
of changing Xi
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I Compliers would not take the treatment if they had Xi = c and
we increased the cutoff by some small amount
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LATE in the Fuzzy RD

I We can define an estimator that is in the spirit of IV:

τFRD = limx↓c E [Yi |Xi = x ]− limx↑c E [Yi |Xi = x ]
limx↓c E [Ai |Xi = x ]− limx↑c E [Ai |Xi = x ]

= effect of threshold on Yi
effect of threshold on Ai

I Under the FRD assumption, continuity, consistency,
monotonicity, and local exogeneity, we can write that the
estimator is equal to the effect at the threshold for compliers.

τFRD = lim
e↓0

E [τi |Ai(c + e) > Ai(c − e)]
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Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)

= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)

= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)

= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)
= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)
= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)
= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]

= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)
= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]

= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)
= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof
I To prove this, we’ll look at the discontinuity in Yi in a window

around the threshold and then shrink that window:

E [Yi |Xi = c + e]− E [Yi |Xi = c − e]

I First, remember that by consistency,

Yi = Yi(1)Ai + Yi(0)(1− Ai)
= Yi(0) + (Yi(1)− Yi(0))Ai

= Yi(0) + τiAi

I Plug this into the CEF of the outcome:

E [Yi |Xi = c + e] = E [Yi(0) + τiAi |Xi = c + e]
= E [Yi(0) + τiAi(c + e)]

I Thus, we can write the difference around the threshold as:

E [Yi |Xi = c+e]−E [Yi |Xi = c−e] = E [τi(Ai(c+e)−Ai(c−e))]



Proof (cont)

I Let’s break this expectation apart using the law of iterated
expectations:
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E [Ai |Xi = c + e]− E [Ai |Xi = c − e] = E [τi | Ai(c+e) > Ai(c−e)]



Misc notes

I Taking the limit as e → 0, we’ve shown that:

τFRD = limx↓c E [Yi |Xi = x ]− limx↑c E [Yi |Xi = x ]
limx↓c E [Ai |Xi = x ]− limx↑c E [Ai |Xi = x ]

= lim
e↓0

E [τi |Ai(c + e) > Ai(c − e)]

I Note that the FRD estimator emcompasses the SRD estimator
because with a sharp design:

lim
x↓c

E [Ai |Xi = x ]− lim
x↑c

E [Ai |Xi = x ] = 1

I A note on external validity: obsviously, FRD puts even more
restrictions on the external validity of our estimates because
not only are we discussing a LATE, but also the effect is at the
threshold. That might give us pause about generalizing other
populations for the both the SRD and FRD.
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Estimation in FRD
I Remember that we had:

τFRD = limx↓c E [Yi |Xi = x ]− limx↑c E [Yi |Xi = x ]
limx↓c E [Ai |Xi = x ]− limx↑c E [Ai |Xi = x ]

I We can estimate the numerator using the SRD approaches we
just outlined, τ̂SRD.

I For the denominator, we simply apply the local linear regression
to the Ai :

(α̂aL, β̂aL) = argmin
α,β

∑
i :Xi∈[c−h,c)

(Ai − α− β(Xi − c))2

(α̂aR , β̂aR) = argmin
α,β

∑
i :Xi∈[c,c+h]

(Ai − α− β(Xi − c))2

I Use this to calculate the effect of threshold on Ai :
τ̂a = α̂aR − α̂aL

I Calculate ratio estimator:

τ̂FRD = τ̂SRD
τ̂a
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More practical FRD estimation

I The ratio estimator above is equivalent to a TSLS approach.

I Use the same specification as above with the following
covariates:

Vi =


1

I{Xi < c}(Xi − c)
I{Xi ≥ c}(Xi − c)


I First stage:

Ai = δ′1Vi + ρI{Xi ≥ c}+ νi

I Second stage:
Yi = δ′2Vi + τAi + ηi

I Thus, being above the threshold is treated like an instrument,
controlling for trends in Xi .
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