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Instrumental Variables

I Last week we talked about how to make progress when you
have randomization or selection on the observables.

I But what if you have neither of those two for your treatment
variable? Are you doomed?

I Maybe.
I But if you can identify some exogenous sources of variation

that drive the treatment, even if the treatment was not
randomly assigned, you may be able to make headway.

I The basic idea behind instrumental variables is that we have a
treatment with unmeasured confounding, but that we have
another variable, called the instrument, that affects the
treatment, but not the outcome, and thus give us that
exogenous variation.
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Basic IV setup with DAGs
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I Z is the instrument, A is the treatment, and U is the
unmeasured confounder

I Exclusion restriction

I no common causes of the instrument and the outcome
I no direct or indirect effect of the instrument on the outcome

not through the treatment.

I First-stage relationship: Z affects A
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An IV is only as good as its assumptions

Z A

U

Y

exclusion restriction

I Finding a believable instrument is incredibly difficult and some
people never believe any IV setups.

I We will see that even if all of the untestable assumptions are
met, the IV approach estimates a “local” ATE. That is, local to
this particular case/instrument.
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IVs in the field

I Angrist (1990): Draft lottery as an IV for military service
(income as outcome)

I Acemoglu et al (2001): settler mortality as an IV for
institutional quality (GDP/capita as outcome)

I Levitt (1997): being an election year as IV for police force size
(crime as outcome)

I Kern & Hainmueller (2009): having West German TV
reception in East Berlin as an instrument for West German TV
watching (outcome is support for the East German regime)

I Nunn & Wantchekon (2011): historical distance of ethnic
group to the coast as a instrument for the slave raiding of that
ethnic group (outcome are trust attitudes today)

I Acharya, Blackwell, Sen (2014): cotton suitability as IV for
proportion slave in 1860 (outcome is white attitudes today)
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IV with constant effects

I Let’s write down a causal model for Yi with constant effects
and an unmeasured confounder, Ui :

Yi (a, u) = α + τa + γu + ηi

I If we connect this with a consistency assumption, we get the
this regression form:

Yi = α + τAi + γUi + ηi

I Here we assume that E [Aiηi ] = 0, so if we measured Ui , then
we would be able to estimate τ .

I But cov(γUi + ηi ,Ai ) 6= 0 because U is a common cause of A
and Y .
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The role of the instrument

I If we have an instrument, Zi , that satisfies the exclusions
restriction, then

cov(γUi + ηi ,Zi ) = 0

I It must be independent of Ui and it has no correlation with ηi
because neither does the treatment.

cov(Yi ,Zi ) = cov(α + τAi + γUi + ηi ,Zi )
= cov(α,Zi ) + cov(τAi ,Zi ) + cov(γUi + ηi ,Zi )
= 0 + τcov(Ai ,Zi ) + 0
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IV estimator with constant effects

Yi = α + τAi + γUi + ηi

I With this in hand, we can formulate an expression for the
average treatment effect here:

τ = Cov(Yi ,Zi )
Cov(Ai ,Zi )

= Cov(Yi ,Zi )/V [Zi ]
Cov(Ai ,Zi )/V [Zi ]

I Reduced form coefficient: Cov(Yi ,Zi )/V [Zi ]
I First stage coefficient: Cov(Ai ,Zi )/V [Zi ]
I What happens with a weak first stage?
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Wald Estimator

I With a binary instrument, there is a simple estimator based on
this formulation called the Wald estimator. It is easy to show
that:

τ = Cov(Yi ,Zi )
Cov(Ai ,Zi )

= E [Yi |Zi = 1]− E [Yi |Zi = 0]
E [Ai |Zi = 1]− E [Ai |Zi = 0]

I Intuitively, the effects of Zi on Yi divided by the effect of Zi on
Ai
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What about covariates?

I No covariates up until now. What if we have a set of covariates
Xi that we are also conditioning on?

I Let’s start with linear models for both the outcome and the
treatment:

Yi = X ′i β + τAi + εi

Ai = X ′iα + γZi + νi

I Now, we assume that Xi are exogenous along with Zi :

E [Ziνi ] = 0 E [Ziεi ] = 0

E [Xiνi ] = 0 E [Xiεi ] = 0
I . . . but Ai is endogenous: E [Aiεi ] 6= 0
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Getting the reduced form

I We can plug the treatment equation into the outcome
equation:

Yi = X ′i β + τ [X ′iα + γZi + νi ] + εi

= X ′i β + τ [X ′iα + γZi ] + [τνi + εi ]
= X ′i β + τ [X ′iα + γZi ] + ε∗i

I Red value in the brackets is the population fitted value of the
treatment, E [Ai |Xi ,Zi ]

I Because Zi and Xi are uncorrelated with νi and εi , then this
fitted value is also independent of ε∗i .

I Thus, the population regression coefficient of a Yi on
[X ′iα + γZi ] is the average treatment effect, τ .
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Two-stage least squares

I In practice, we estimate the first stage from a sample and
calculate OLS fitted values:

Âi = X ′i α̂ + γ̂Zi .

I Here, α̂ and γ̂ are estimates from OLS. Then, we estimate a
regression of Yi on Xi and Âi . We plug this into our equation
for Yi and note that the error for Ai is now a residual:

Yi = X ′i β + τ Âi + [εi + τ(Ai − Âi )]

I Key question: is Âi uncorrelated with the error?
I Âi is just a function of Xi and Zi so it is uncorrelated with εi .
I We also know that Âi is uncorrelated with (Ai − Âi )?
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Two-stage least squares

I Heuristic procedure:

1. Run regression of treatment on covariates and instrument
2. Construct fitted values of treatment
3. Run regression of outcome on covariates and fitted values

I Note that this isn’t how we actually estimate 2SLS because the
standard errors are all wrong.

I Computer wants to calculate the standard errors based on ε∗i ,
but what we really want is the standard errors based on εi .
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standard errors are all wrong.

I Computer wants to calculate the standard errors based on ε∗i ,
but what we really want is the standard errors based on εi .



Nunn & Wantchekon IV example



General 2SLS

I To save on notation, we’ll roll all the variables in the structural
model in one vector, Xi , of size k, some of which may be
endogenous.

I The structural model, then is:

Yi = X ′i β + εi

I Zi will be a vector of l exogenous variables that includes any
exogenous variables in Xi plus any instruments. Key
assumption:

E [Ziεi ] = 0
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Nasty Matrix Algebra
I Useful quantities:

Π = (E [ZiZ ′i ])−1E [ZiX ′i ] (projection matrix)

Vi = Π′Zi (fitted values)

I To derive the 2SLS estimator, take the fitted values, Π′Zi and
multiply both sides of the outcome equation by them:

Yi = X ′i β + εi

Π′ZiYi = Π′ZiX ′i β + Π′Ziεi

Π′E [ZiYi ] = Π′E [ZiX ′i ]β + Π′E [Ziεi ]
Π′E [ZiYi ] = Π′E [ZiX ′i ]β

β = (Π′E [ZiX ′i ])−1Π′E [ZiYi ]

β = (E [XiZ ′i ](E [ZiZ ′i ])−1E [ZiX ′i ])−1E [ZiX ′i ](E [ZiZ ′i ])−1E [ZiYi ]
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How to estimate the parameters

I Collect Xi into a n × k matrix X = (X ′1, . . . ,X ′n)

I Collect Zi into a n × l matrix Z = (Z ′1, . . . ,Z ′n)
I Matrix party trick: X ′Z/n = (1/n)

∑N
i XiZ ′i

p→ E [XiZ ′i ].
I Take the population formula for the parameters:

β = (E [ZiX ′i ](E [ZiZ ′i ])−1E [ZiX ′i ])−1E [ZiX ′i ](E [ZiZ ′i ])−1E [ZiYi ]

I And plug in the sample values (the n cancels out):

β̂ = [(X ′Z )(Z ′Z )−1(Z ′X )]−1(Z ′X )(Z ′Z )−1(Z ′Y )

I This is how R/Stata estimates the 2SLS parameters
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Asymptotics for 2SLS

I Let V = Z (Z ′Z )−1Z ′X be the matrix of fitted values for X ,
then we have

β̂ = (V ′V )−1V ′Y

I We can insert the true model for Y :

β̂ = (V ′V )−1V ′(Xβ + ε)

I Using the matrix party trick and that V ′X = V ′V , we have

β̂ = (V ′V )−1V ′Xβ + (V ′V )−1V ′ε

= β +
[
n−1∑

i
ViV ′i

]−1
n−1∑

i
Viεi

I Consistent because n−1∑
i Viεi

p→ E [Viεi ] = 0.
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Asymptotic variance for 2SLS
√
n(β̂ − β) =

(
n−1∑

i
ViV ′i

)−1(
n−1/2∑

i
Viεi

)

I By the CLT, n−1/2∑
i Viεi converges in distribution to

N(0,B), where B = E [V ′i ε′iεiVi ].

I By the LLN, n−1∑
i ViV ′i

p→ E [V ′i Vi ].
I Thus, we have that

√
n(β̂ − β) has asymptotic variance:

(E [V ′i Vi ])−1E [V ′i ε′iεiVi ](E [V ′i Vi ])−1

I Replace with the sample quantities to get estimates:

v̂ar(β̂) = (V ′V )−1
(∑

i
û2

i ViV ′i
)

(V ′V )−1

where ûi = Yi − X ′i β̂
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Overidentification

I What if we have more instruments than endogenous variables?

I When there are more instruments than causal parameters
(l > k), the model is overidentified.

I When there are as many instruments as causal parameters
(l = k), the model is just identified.

I With more than one instrument and constant effects, we can
test for the plausibility of the exclusion restriction(s) using an
overidentification test.

I Is it plausible to find more than one instrument?
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Overidentification tests

I Sargan test, Hansen test, J-test, etc.

I Basic idea: under null that all instruments are good, running it
with different subset of the instruments should only differ due
to sampling noise.

I Identify the distribution of that noise under the null to develop
a test.

I If we reject the null hypothesis in these overidentification tests,
then it means that the exclusion restrcitions for our
instruments are probably incorrect. Note that it won’t tell us
which of them are incorrect, just that at least one is.

I These overidentification tests depend heavily on the constant
effects assumption

I Once we move away from constant effects, we no longer can
generally pool multiple instruments together in this way.
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Instrumental Variables and Potential Outcomes
I The basic idea behind instrumental variable approaches is that

we do not have ignorability for Ai , but we do have a variable,
Zi , that affects Ai , but only affects the outcome through Ai .

I Note that we allow the instrument, Zi to have an effect on Ai ,
so the treatment must have potential outcomes, Ai (1) and
Ai (0), with the usual consistency assumption:

Ai = ZiAi (1) + (1− Zi )Ai (0)

I Outcome can depend on both the treatment and the
instrument: Yi (a, z) is the outcome if unit i had received
treatment Ai = a and instrument value Zi = z .

I The effect of the treatment given the value of the instrument is

Yi (1,Zi )− Yi (0,Zi )

.
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Randomization

I Need the instrument to be randomized:

[{Yi (a, z), ∀a, z},Ai (1),Ai (0)] ⊥⊥ Zi

I We can weaken this to conditional ignorability
I But why believe conditional ignorability for the instrument but

not the treatment?
I Best instruments are truly randomized.
I Identifies the intent-to-treat (ITT) effect:

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (Ai (1), 1)− Yi (Ai (0), 0)]
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Exclusion Restriction

I The instrument has no direct effect on the outcome, once we
fix the value of the treatment.

Yi (a, 1) = Yi (a, 0) for a = 0, 1

I Given this exclusion restriction, we know that the potential
outcomes for each treatment status only depend on the
treatment, not the instrument:

Yi (1) ≡ Yi (1, 1) = Yi (1, 0)
Yi (0) ≡ Yi (0, 1) = Yi (0, 0)

I NOT

A TESTABLE ASSUMPTION
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The linear model with heterogeneous effects

I Rewriting the usual consistency assumption gives us a linear
model with heterogeneous effects (we have seen this before in
randomized experiments):

Yi = Yi (0) + (Yi (1)− Yi (0))Ai

= α0 + τiAi + ηi

I Here, we have α0 = E [Yi (0)] and τi = Yi (1)− Yi (0).
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First Stage

I This next assumption is a little mundane, but turns out to be
very important: the instrument must have an effect on the
treatment.

E [Ai (1)− Ai (0)] 6= 0

I Otherwise, what would we be doing? The instrument wouldn’t
affect anything.
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Monotonicity

I Lastly, we need to make another assumption about the
relationship between the instrument and the treatment.

I Monotonicity says that the presence of the instrument never
dissuades someone from taking the treatment:

Ai (1)− Ai (0) ≥ 0

I Note if this holds in the opposite direction Ai (1)− Ai (0) ≤ 0,
we can always rescale Ai to make the assumption hold.
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Monotonicity means no defiers

I This is sometimes called “no defiers”. It turns out that with a
binary treatment and a binary instrument, we can group units
into four categories:

Name Ai (1) Ai (0)
Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1

I These compliance groups are sometimes called “principal
strata.”

I The monotonicity assumption remove the possibility of there
being defiers in the population.

I Anyone with Ai = 1 when Zi = 0 must be an always-taker and
anyone with Ai = 0 when Zi = 1 must be a never-taker.
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Local Average Treatment Effect (LATE)

I Under these four assumptions, the Wald estimator is equal
what we call Local average treatment effect (LATE) or the
complier average treatment effect (CATE).

I This is is the ATE among the compliers: those that take the
treatment when encouraged to do so.

I That is, the LATE theorem, states that:

E [Yi |Zi = 1]− E [Yi |Zi = 0]
E [Ai |Zi = 1]− E [Ai |Zi = 0] = E [Yi (1)−Yi (0)|Ai (1) > Ai (0)]

I This fact was a massive intellectual jump in our understanding
of IV.
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Proof of the LATE theorem
I Under the exclusion restriction and randomization,

E [Yi |Zi = 1] = E [Yi (0) + (Yi (1)− Yi (0))Ai |Zi = 1]
= E [Yi (0) + (Yi (1)− Yi (0))Ai (1)] (randomization)

I The same applies to when Zi = 0, so we have

E [Yi |Zi = 0] = E [Yi (0) + (Yi (1)− Yi (0))Ai (0)]

I Thus, $E[Y_i |Z_i = 1] - E[Y_i |Z_i = 0] = $

E [(Yi (1)− Yi (0))(Ai (1)− Ai (0))]

=E [(Yi (1)− Yi (0))(1)|Ai (1) > Ai (0)] Pr[Ai (1) > Ai (0)]
+E [(Yi (1)− Yi (0))(−1)|Ai (1) < Ai (0)] Pr[Ai (1) < Ai (0)]
=E [Yi (1)− Yi (0)|Ai (1) > Ai (0)] Pr[Ai (1) > Ai (0)]

I The third equality comes from monotonicity: with this
assumption, Ai (1) < Ai (0) never occurs.
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Proof (continued)

E [Yi |Zi = 1]−E [Yi |Zi = 0] = E [Yi (1)−Yi (0)|Ai (1) > Ai (0)] Pr[Ai (1) > Ai (0)]

- We can use the same argument for the denominator:

E [Ai |Zi = 1]− E [Ai |Zi = 0] = E [Ai (1)− Ai (0)]
= Pr[Ai (1) > Ai (0)]

- Dividing these two expressions through gives the LATE.
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Is the LATE useful?

I Once we allow for heterogeneous effects, all we can estimate
with IV is the effect of treatment among compliers.

I This is a unknown subset of the data. Among treated units
with Zi = 1, we cannot distinguish them from the always-takers
and similarly for the control units with Zi = 0.

I Without further assumptions, this estimand is not equal to
overall treatment effect or the treatment effect on the treated.

I Furthermore, since the complier group depends on the
instrument, an IV estimate with one instrument will generally
estimate a different quantity than an IV estimate of the same
effect with a different instrument.

I 2SLS “cheats” by assuming that the effect is constant, so it is
the same for compliers and non-compliers.
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instrument, an IV estimate with one instrument will generally
estimate a different quantity than an IV estimate of the same
effect with a different instrument.

I 2SLS “cheats” by assuming that the effect is constant, so it is
the same for compliers and non-compliers.



Randomized trials with one-sided noncompliance

I Will the LATE ever be equal to a usual causal quantity?

I When non-compliance is one-sided, then the LATE is equal to
the ATT.

I Think of a randomized experiment:

I Randomized treatment assignment = instrument (Zi)
I Non-randomized actual treatment taken = treatment (Ai)

I One-sided noncompliance: only those assigned to treatment
(control) can actually take the treatment (control). Or

Pr[Ai = 1|Zi = 0] = 0

I Maybe this is because only those treated actually get pills or
only they are invited to the job training location.
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Benefits of one-sided noncompliance
I With this assumption, we know that there are no
“always-takers” and since there are no defiers, anyone treated
(Zi = 1) that takes the treatment (Ai = 1) is a complier.

I Thus, we know that: E [Yi |Zi = 1]− E [Yi |Zi = 0] =

E [Yi (0) + (Yi (1)− Yi (0))Ai |Zi = 1]− E [Yi (0)|Zi = 0]
(exclusion restriction + one-sided noncompliance)

=E [Yi (0)|Zi = 1] + E [(Yi (1)− Yi (0))Ai |Zi = 1]− E [Yi (0)|Zi = 0]
=E [Yi (0)] + E [(Yi (1)− Yi (0))Ai |Zi = 1]− E [Yi (0)]
(randomization)

=E [(Yi (1)− Yi (0))Ai |Zi = 1]
=E [Yi (1)− Yi (0)|Ai = 1,Zi = 1] Pr[Ai = 1|Zi = 1]
(law of iterated expectations + binary treatment)

=E [Yi (1)− Yi (0)|Ai = 1] Pr[Ai = 1|Zi = 1]
(one-sided noncompliance)
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I Noting that Pr[Ai = 1|Zi = 0] = 0, then the Wald estimator is
just the ATT:

E [Yi |Zi = 1]− E [Yi |Zi = 0]
Pr[Ai = 1|Zi = 1] = E [Yi (1)− Yi (0)|Ai = 1]

I Thus, under the additional assumption of one-sided compliance,
we can estimate the ATT using the usual IV approach .

I The ATT is a combination of the LATE and the ATE for the
always-takers. If we remove the possibility of the always takers,
then anyone who actually takes the treatment is a complier.

I It’s also easy to see that if we switch the direction of one-sided
compliance, then we can esimate the average treatment effect
for the controls.
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Falsification tests

I The exclusion restriction cannot be tested directly, but it can
be falsified.

I Under the exclusion restriction, Zi only has an effect on Yi
because it has an effect on Ai .

I Falsification test Test the reduced form effect of Zi on Yi in
situations where it is impossible or extremely unlikely that Zi
could affect Ai .

I Because Zi can’t affect Ai , then the exclusion restriction
implies that this falsification test should have 0 effect. If we
find an effect, instrument is suspicious.

I Nunn & Wantchekon (2011): use distance to coast as an
instrument for Africans, use distance to the coast in an Asian
sample as falsification test.
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Nunn & Wantchekon falsification test



Size, characteristics of the compliers

I While we cannot identify who is a complier and who is not a
complier in general, we can estimate the size of the complier
group:

Pr[Ai (1) > Ai (0)] = E [Ai (1)−Ai (0)] = E [Ai |Zi = 1]−E [Ai |Zi = 0]

I Angrist and Pischke describe ways to calculate the difference
between the compliers and overall population in terms of binary
covariates.

I Abadie (2003) shows how to calculate the mean of any
covariate in the complier group.
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Multiple instruments

I Since each instrument implies a different complier group, each
instrument estimates a causal effect for a different subset of
the population.

I Thus, if we had two instrument, then there would be two
different LATEs, ρ1 and ρ2 for instruments Z1i and Z2i . We
might try to use 2SLS to estimate an overall effect with these
instruments with following first stage:

Âi = π1Z1i + π2Z2i .
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2SLS as weighted average

I In Angrist and Pischke, they show that the 2SLS estimator
using these two instruments is a weighted sum of the two
component LATEs:

ρ2SLS = ψρ1 + (1− ψ)ρ2,

where the weights are:

ψ = π1Cov(Ai ,Z1i )
π1Cov(Ai ,Z1i ) + π2Cov(Ai ,Z2i )

I Thus, the 2SLS estimate is a weighted average of causal effects
for each instrument, where the weights are related to the
strenght of prediction for each of the first stage effects of the
instruments.
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Covariates and heterogeneous effects

I It might be the case that the above assumptions only hold
conditional on some covariates, Xi . That is, instead of
randomization, we might have conditional ignorability:

[{Yi (a, z), ∀a, z},Ai (1),Ai (0)] ⊥⊥ Zi |Xi

I We would also have exclusion conditional on the covariates:

Pr[Yi (a, 0) = Yi (a, 1)|Xi ] = 1 for a = 1, 0

I Under these assumptions, Angrist and Pischke show that if you
fully saturate the first stage and the second stage in the
covariates, then 2SLS estimates a weighted average of the
covariates-specific LATEs (very similar to regression).

I Abadie (2003) shows how to estimate the overall LATE using a
weighting approach based on a “propensity score” for the
instrument.
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