
On Model Dependence in the
Estimation of Interactive
Effects
September 25th, 2019
Matthew Blackwell Michael Olson



Motivation

effect heterogenetity
effect of treatment 𝐷𝑖 is different at
different levels of a moderator 𝑉𝑖

why do we care?

theory
testing

causal
mechanisms

optimal
assignment

2 / 24



Motivation

effect heterogenetity
effect of treatment 𝐷𝑖 is different at
different levels of a moderator 𝑉𝑖

why do we care?

theory
testing

causal
mechanisms

optimal
assignment

2 / 24



Motivation

effect heterogenetity
effect of treatment 𝐷𝑖 is different at
different levels of a moderator 𝑉𝑖

why do we care?

theory
testing

causal
mechanisms

optimal
assignment

2 / 24



Motivation

effect heterogenetity
effect of treatment 𝐷𝑖 is different at
different levels of a moderator 𝑉𝑖

why do we care?

theory
testing

causal
mechanisms

optimal
assignment

2 / 24



Motivation

effect heterogenetity
effect of treatment 𝐷𝑖 is different at
different levels of a moderator 𝑉𝑖

why do we care?

theory
testing

causal
mechanisms

optimal
assignment

2 / 24



Two ways to investigate heterogeneity

split sample by
moderator

single multiplicative
interaction term

Uncommon Very common

When moderator is binary
and no covariates⇝ equivalent.

…but can very different results in other
conditions.
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Toy Example

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Split samples on moderator

Effect of treatment

True interaction

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Single interaction

Effect of treatment

True interaction

• Why do these approaches give different results?

• Should we prefer one to the other?

• Is there another method that can outperform both?
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Basic Problem

• Why the divergence? Covariates!

• More specifically: a single-interaction model omits covariate-moderator
interactions that are likely to be important.

• We call this omitted interaction bias, but really a form of model
dependence.

• Okay... so just use the split sample approach? (can we leave the talk
early?)

• Unfortunately, not always because... covariates!
• Lots of covariates⇝ noisy estimates, overfitting.

• Our proposal: use regularization to balance between single interaction
and split sample.

• Avoids overfitting while avoiding large biases of the single interaction.
• Can’t just apply standard lasso due to bias, lack of uncertainty.
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Interactions literature

• Cottage industry of interactions papers in political science covering:

• Finger wagging at omitting base terms, correct interpretation thereof.
• Using plots to visualize marginal effects.
• Be careful of linearity assumptions with interactions.
• Do we need interactions in non-linear models?

• Statistics and causal inference literature focused on differences between
“effect modfication” and “causal interaction.”

• The issues here are orthogonal to most of this literature.
• Most similar: Vansteelandt, Vanderweele, Tchetgen Tchetgen, and Robins
(2008, JASA) on multiply robust estimation of interactions.

• This approach still requires correct models somewhere, whereas we’ll use
the lasso to select out the model.
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Roadmap

1. The Problem

2. Solutions

3. Simulations

4. Empirical Applications

5. Conclusion
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1/ The Problem



Setup and notation

• Assume iid sample {1, … , 𝑁} (some clustering allowed later)

• Relevant variables:

• Outcome 𝑌𝑖, treatment 𝐷𝑖, and effect modifier 𝑉𝑖.
• Other pretreatment covariates: 𝑋𝑖 of dimension 𝐾 (might be
high-dimensional)

• Important—we consider 𝑋𝑖 to be nuisances.

• We only care about main effect of 𝐷𝑖 and interaction with 𝑉𝑖.

• Focusing on an confirmatory interaction analysis.

• Not directly interested in “exploring” all possible interactions between 𝐷𝑖
and covariates.

• Dominant application of interactions in empirical papers.
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Omitted interaction bias

Base regression 𝑌𝑖 = 𝛼0 + 𝛼1𝐷𝑖 + 𝛼2𝑉𝑖 + 𝑋 ′𝑖 𝜶3 + 𝜀𝑖1

Single
interaction

𝑌𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝛽2𝑉𝑖 + 𝑋 ′𝑖 𝜷3 + 𝛽4𝐷𝑖𝑉𝑖 + 𝜀𝑖2

Fully
moderated

𝑌𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + 𝛿2𝑉𝑖 + 𝑋 ′𝑖 𝜹3 + 𝛿4𝐷𝑖𝑉𝑖 + 𝑉𝑖𝑋 ′𝑖 𝜹5 + 𝜀𝑖3

Omitted
interaction bias 𝛽4

𝑝→ 𝛿4 + 𝜸′𝑣𝜹5

• Single interaction assumes 𝑋𝑖 have constant effects across 𝑉𝑖.
• Only valid when omitted interactions unrelated to 𝑌𝑖 (𝜹5 = 0) or
unrelated to 𝐷𝑖𝑉𝑖 (𝜸𝑣 = 0).

• Randomization of 𝐷𝑖 does not guarantee that this holds.

• Holds if 𝐷𝑖 and 𝑉𝑖 are both randomized as in a conjoint experiment.
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2/ Solutions



Easiest solutions

• Simplest solution: just run the fully moderated model.

• Avoids any omitted interaction bias.
• Equivalent to splitting sample on 𝑉𝑖 with easier uncertainty estimates.

• One could even generalize this to handle heterogeneous effects:

• Predicted values: 𝜇(𝑑, 𝑣, 𝑥) = 𝔼̂[𝑌𝑖 ∣ 𝐷𝑖 = 𝑑, 𝑉𝑖 = 𝑣, 𝑋𝑖 = 𝑥]
• Estimated interaction:

1
𝑁

𝑁
∑
𝑖=1

𝜇(1, 1, 𝑋𝑖) − 𝜇(0, 1, 𝑋𝑖) − 𝜇(1, 0, 𝑋𝑖) + 𝜇(0, 0, 𝑋𝑖)

• Problem: if 𝑋𝑖 is highly dimensional, fully moderated model will overfit
and be noisy.

• Roughly doubles the number of covariates in the model.
• Can be substantial especially with fixed effects in 𝑋𝑖.
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Regularization to the rescue?

• When free to pick any coefficients, OLS will pick very large values to
minimize residuals⇝ overfitting.

• Stabilize estimates via regularization/shrinkage: penalize coefficient
vectors that are too large.

• One popular approach: Lasso or 𝐿1-regularization:

𝜷lasso = arg min
𝜷

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑋 ′𝑖 𝜷)2 + 𝜆‖𝜷‖1

• ‖𝜷‖1 = ∑𝑗 |𝛽𝑗| is the 𝐿1 norm of the coefficients.
• 𝜆 ≥ 0 is a complexity parameter: larger 𝜆, more shrinkage.
• With large enough 𝜆 some coefficients will be set to 0 (sparsity).
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Why the vanilla lasso doesn’t work

One solution: Apply standard lasso to fully moderated model:

arg min
𝜷

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝛿1𝐷𝑖 − 𝛿2𝑉𝑖 − 𝑋 ′𝑖 𝜹3 − 𝛿4𝐷𝑖𝑉𝑖 − 𝑉𝑖𝑋 ′𝑖 𝜹5)2 + 𝜆‖𝜹‖1

Problems:

• Coefficients of interest are biased due to regularization, even in large
samples.

• Bias due to costly model selection mistakes:

• Lasso will zero out interactions with small predictive power for 𝑌𝑖, even if
has massive importance for 𝐷𝑖𝑉𝑖.

• No straightforward way to obtain uncertainty estimates for QOIs.

• Possible to select interaction while regularizing base term to 0⇝
awkward interpretation.
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Post-double selection procedure

• Our approach: adapt the post-double-selection approach of Belloni et al
(2014) to our setting.

• Originally designed to avoid regularization bias with high-dimensional
covariates, but low dimensional quantities of interest (like the ATE).

• Let𝑍 ′𝑖 = [𝑉𝑖, 𝑋 ′𝑖 , 𝑉𝑖𝑋 ′𝑖 ] be the vector of (centered) “nuisance” variables.
• Algorithm:

1. Run lasso of 𝑌𝑖 on 𝑍𝑖 with carefully chosen tuning parameter.
2. Run lasso of 𝐷𝑖 on 𝑍𝑖 with carefully chosen tuning parameter.
3. Run lasso of 𝐷𝑖𝑉𝑖 on 𝑍𝑖 with carefully chosen tuning parameter.
4. Collect variables selected (ie, non-zero) by any of (1)-(3) into 𝑍 ∗𝑖
5. Run OLS of 𝑌𝑖 on 𝐷𝑖, 𝐷𝑖𝑉𝑖, and 𝑍 ∗𝑖 .

• One can optionally override the lasso for certain variables and force their
inclusion into step (5).

• We force all base terms to be included for comparison with other models.
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Post-double-selection properties

• Avoids key biases:

• Regularization bias avoided by post-lasso estimation via OLS.
• Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.

• Belloni et al (2014) prove:

• Coefficients on 𝐷𝑖 and 𝐷𝑖𝑉𝑖 are consistent.
• Standard errors from OLS asymptotically correct.
• Can allow for robust SEs as well.
• Can handle clustering as well, but requires different tuning parameter
selection.
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Approximate sparsity

• Belloni et al (2014) prove asymptotic results under key assumption of
approximate sparsity:

𝔼[𝑌𝑖 ∣ 𝑍𝑖] = 𝑍 ′𝑖 𝜹𝑦0 + 𝑟𝑦𝑖,
𝐾

∑
𝑗=1

𝟏(𝛿𝑦𝑗 ≠ 0) ≤ 𝑠, {(1/𝑁) ∑
𝑖

𝔼[𝑟2𝑦𝑖]}
1/2

≤ 𝐶√𝑠/𝑁

• CEFs are well-approximated by a sparse representation with 𝑠 terms.
• Similar assumptions on CEF for 𝐷𝑖 and 𝐷𝑖𝑉𝑖
• Rate condition: (𝑠 log(max(𝐾, 𝑁)))2/𝑁 → 0. Number of terms needed
for approximation doesn’t grow too quickly relative to 𝑁 .

• Sample splitting can weaken this requirement, but difficult to apply with
fixed effects which are common.
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How to choose complexity parameter

arg min
𝜹

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝑍 ′𝑖 𝜹𝑦)
2

+
𝐾

∑
𝑗=1

𝜆𝑦𝑗|𝛿𝑦𝑗|

• Rate condition requires choosing penalty loadings carefully.

• Belloni et al show that the ideal penalty loadings for estimation (not

prediction) are: 𝜆𝑦𝑗 ∝ √(1/𝑁) ∑𝑖 𝑍2𝑖𝑗𝜀2𝑖 where 𝜀𝑖 are the errors.

• Intuition: more regularization for variables whose “noise” correlates with
the error.

• Feasible approach: run preliminary lasso to obtain estimates 𝜀𝑖.

• Allows for non-normal and heteroskedastic errors.

• We apply an extension for clustered data in our applications (similar to
cluster robust SEs).
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3/ Simulations



Simulation setup

𝑌𝑖 = 𝛿0 + 𝛿1𝐷𝑖 + 𝛿2𝑉𝑖 + 𝑋 ′𝑖 𝜹3 + 𝛿4𝐷𝑖𝑉𝑖 + 𝑉𝑖𝑋 ′𝑖 𝜹5 + 𝜀𝑖3
𝐷𝑖 = 𝛾0 + 𝛾1𝑉𝑖 + 𝑋 ′𝑖 𝜸2 + 𝑉𝑖𝑋 ′𝑖 𝜸3

• DGP is fully moderated model where coefficients have quadratic decay:

• Effect of 𝑋-𝑉 interactions on 𝑌: 𝛿5𝑗 = 𝑐𝑣𝑦(1/𝑗2)
• Effect of 𝑋-𝑉 interactions on 𝐷: 𝛾3𝑗 = 𝑐𝑣𝑑(1/𝑗2)
• Select 𝑐𝑣𝑦 and 𝑐𝑣𝑑 to have partial 𝑅2 of these interaction terms be in

{0, 0.25, 0.5}.
• Vary the number of covariates in 𝑋𝑖, 𝐾 ∈ {20, 200}.

• Note that this isn’t a sparse model⇝ difficult case for lasso.

• 𝑁 = 750 and 10, 000 iterations per DGP.
• Methods to compare:

• Single interaction (not shown due to huge bias).
• Fully moderated.
• Post-lasso on just outcome (using cross-validation).
• Post-double-selection.
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Simulation results: bias
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Simulation results: RMSE
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4/ Empirical Applications



Regime type and remittances

• Escribà-Folch, Meseguer, and Wright (AJPS 2018) argue that higher levels of
incoming remittances ought to lead to higher levels of political protest,
but only in autocracies

• “We show that remittances are associated with protests in autocratic
regimes, but not in democracies.” (890)

• Pair novel continuous measure of protest (based on dynamic IRT) with
World Development Indicators data on remittances remittances entering
a country

• 102 non-OECD countries (coded as democracies or autocracies) from 1976
to 2010
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Regime type and remittances

Original Model

Protest𝑖𝑡 = 𝛽 (Remit𝑖𝑡 × Autocracy𝑖𝑡) + 𝛾Remit𝑖𝑡
+ 𝜙Autocracy𝑖𝑡 + 𝝍X𝑖𝑡 + 𝜏𝑡 + 𝛼𝑖 + 𝜖𝑖𝑡

• Quantity of interest is 𝛽: coefficient on single interaction between
remittances (continuous) and autocracies (binary)

• Model includes country (𝛼) and five-year time period (𝜏 ) fixed effects
• X is a vector of time-varying covariates
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Results
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5/ Conclusion



Summary

• When estimating interactions, interactions on “nuisance” covariates can
be important.

• Single interaction model⇝ omitted interaction bias.

• Fully moderated models (split sample on moderator) can avoid these bias.
• We propose an alternative when dimensionality of covariates is high:
post-double-selection using the lasso.

• Performs well against alternatives even in finite samples.
• Post-double-selection more broadly useful for estimating treatment
effects with high-dimensional covariates.

• Next steps:

• Apply the split-sample approach of the double machine learning literature
to this setting to relax some assumptions.
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Thanks!

For more information...

Matt
Blackwell

mattblackwell.org

@matt_blackwell

Michael
Olson

michaelpatrickolson.com

@michael_p_olson
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http://www.mattblackwell.org
https://twitter.com/matt_blackwell
http://www.michaelpatrickolson.com
https://twitter.com/michael_p_olson

	The Problem
	Solutions
	Simulations
	Empirical Applications
	Conclusion

