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+ Why the divergence? Covariates!
+ More specifically: a single-interaction model omits covariate-moderator
interactions that are likely to be important.
+ We call this omitted interaction bias, but really a form of model
dependence.
+ Okay... so just use the split sample approach? (can we leave the talk
early?)
- Unfortunately, not always because... covariates!
- Lots of covariates ~+ noisy estimates, overfitting.
+ Our proposal: use regularization to balance between single interaction
and split sample.
- Avoids overfitting while avoiding large biases of the single interaction.
- Can't just apply standard lasso due to bias, lack of uncertainty.
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+ Using plots to visualize marginal effects.
+ Be careful of linearity assumptions with interactions.
- Do we need interactions in non-linear models?
- Statistics and causal inference literature focused on differences between
“effect modfication” and “causal interaction.”

- The issues here are orthogonal to most of this literature.

+ Most similar: Vansteelandt, Vanderweele, Tchetgen Tchetgen, and Robins
(2008, JASA) on multiply robust estimation of interactions.

+ This approach still requires correct models somewhere, whereas we’ll use
the lasso to select out the model.
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Setup and notation

« Assume iid sample {1, ..., N} (some clustering allowed later)
- Relevant variables:

- Outcome Y}, treatment D;, and effect modifier V.

+ Other pretreatment covariates: X; of dimension K (might be

high-dimensional)

- Important—we consider X to be nuisances.

+ We only care about main effect of D, and interaction with V.
+ Focusing on an confirmatory interaction analysis.

+ Not directly interested in “exploring” all possible interactions between D,
and covariates.
+ Dominant application of interactions in empirical papers.

8/24



Omitted interaction bias
Y, =ag+ aD; + o,V + Xz + g

9/24



Omitted interaction bias

)/i N a0+a1Dl+a2\/l+X/a3 +Ei1
ingl
Y, = Bo + BiD; + BoVi + XiBs + BsDyV; + €i
interaction

9/24



Omitted interaction bias

EEENESEES N Y, = ag + oqD; + o,V + X/ a5 + ¢

Singl
Y, = Bo+BiD; + B,V + X{Bs + B4D,V, + €55
interaction
il Y, =80+ 8D; + 8,V + X{85 + 8,0,V + Vi X{65 + ;3
moderated

9/24



Omitted interaction bias

)/i N a0+a1Dl+a2\/l+X/a3 +Ei1
Singl
Y, = Bo+BiD; + B,V + X{Bs + B4D,V, + €55
interaction
il Y, =80+ 8D; + 8,V + X{85 + 8,0,V + Vi X{65 + ;3
moderated
Omitted ~ P ,
interaction bias Bs = 84+ vv85

9/24



Omitted interaction bias

)/i N a0+a1Dl+a2\/l+X/a3 +Ei1

Single 5
. . Y, =Bo+BiD; + B,V + XiBs + BsDV; + €5
interaction

il Y, =80+ 8D; + 8,V + X{85 + 8,0,V + Vi X{65 + ;3

moderated

Omitted ~ P ,

interaction bias Bs = 84+ vv85

+ Single interaction assumes X; have constant effects across V.

9/24



Omitted interaction bias

)/i N a0+a1Dl+a2\/l+X/a3 +Ei1

Single 5
. . Y, =Bo+BiD; + B,V + XiBs + BsDV; + €5
interaction

il Y, =80+ 8D; + 8,V + X{85 + 8,0,V + Vi X{65 + ;3

moderated

Omitted ~ P ,

interaction bias Bs = 84+ vv85

+ Single interaction assumes X; have constant effects across V.

+ Only valid when omitted interactions unrelated to Y; (65 = 0) or
unrelated to D;V; (y,, = 0).

9/24



Omitted interaction bias

)/i N a0+a1Dl+a2\/l+X/a3 +Ei1

Single 5
. . Y, =Bo+BiD; + B,V + XiBs + BsDV; + €5
interaction

il Y, =80+ 8D; + 8,V + X{85 + 8,0,V + Vi X{65 + ;3

moderated

Omitted ~ P ,

interaction bias Bs = 84+ vv85

+ Single interaction assumes X; have constant effects across V.

+ Only valid when omitted interactions unrelated to Y; (65 = 0) or
unrelated to D;V; (y,, = 0).

+ Randomization of D; does not guarantee that this holds.

9/24



Omitted interaction bias

)/i N a0+a1Dl+a2\/l+X/a3 +Ei1

Single 5
. . Yi=PBo+BD; + B,V + XiBs +B4DVi + &5
interaction

i Y, =80+ 8D; + 8,V + X{85 + 8,0,V + Vi X{65 + ;3

moderated

Omitted ~ P ,

interaction bias Bs = 84+ vv85

+ Single interaction assumes X; have constant effects across V.

+ Only valid when omitted interactions unrelated to Y; (65 = 0) or
unrelated to D;V; (y,, = 0).

+ Randomization of D; does not guarantee that this holds.
+ Holds if D, and V; are both randomized as in a conjoint experiment.
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- Estimated interaction:

1L R R R
N > A(.1,X,) = A(0.1,X,) — A(1,0, X,) + (0,0, X,)

i=1

+ Problem: if X is highly dimensional, fully moderated model will overfit
and be noisy.

+ Roughly doubles the number of covariates in the model.
+ Can be substantial especially with fixed effects in X.
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- When free to pick any coefficients, OLS will pick very large values to
minimize residuals ~» overfitting.

+ Stabilize estimates via regularization/shrinkage: penalize coefficient
vectors that are too large.

+ One popular approach: Lasso or L{-regularization:
N 2
e = Sy > (Y= X{B)" +2llBll;
=

- 1Bl = Zj |B,] is the Ly norm of the coefficients.

- A = 0is a complexity parameter: larger A, more shrinkage.
« With large enough A some coefficients will be set to 0 (sparsity).
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samples.
- Bias due to costly model selection mistakes:

+ Lasso will zero out interactions with small predictive power for Y;, even if
has massive importance for D,V;.

- No straightforward way to obtain uncertainty estimates for QOls.

- Possible to select interaction while regularizing base term to 0 ~~
awkward interpretation.
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ivir

- One can optionally override the lasso for certain variables and force their
inclusion into step (5).

+ We force all base terms to be included for comparison with other models.

13/24



Post-double-selection properties

+ Avoids key biases:

14/ 24



Post-double-selection properties

+ Avoids key biases:
- Regularization bias avoided by post-lasso estimation via OLS.

14/ 24



Post-double-selection properties

+ Avoids key biases:

- Regularization bias avoided by post-lasso estimation via OLS.
+ Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.

14/ 24



Post-double-selection properties

+ Avoids key biases:

- Regularization bias avoided by post-lasso estimation via OLS.
+ Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.

- Belloni et al (2014) prove:

14/ 24



Post-double-selection properties

+ Avoids key biases:

- Regularization bias avoided by post-lasso estimation via OLS.
+ Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.

- Belloni et al (2014) prove:
- Coefficients on D; and D,V; are consistent.

14/ 24



Post-double-selection properties

+ Avoids key biases:

- Regularization bias avoided by post-lasso estimation via OLS.
+ Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.

- Belloni et al (2014) prove:

- Coefficients on D; and D,V; are consistent.
+ Standard errors from OLS asymptotically correct.

14/ 24



Post-double-selection pro

+ Avoids key biases:
- Regularization bias avoided by post-lasso estimation via OLS.
+ Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.
+ Belloni et al (2014) prove:
- Coefficients on D; and D,V; are consistent.
+ Standard errors from OLS asymptotically correct.
+ Can allow for robust SEs as well.

14/ 24



Post-double-selection pro

+ Avoids key biases:
- Regularization bias avoided by post-lasso estimation via OLS.
+ Model selection mistakes avoided by taking union of variables important
for outcome, treatment, and treatment-moderator interaction.
+ Belloni et al (2014) prove:
- Coefficients on D; and D,V; are consistent.
+ Standard errors from OLS asymptotically correct.
+ Can allow for robust SEs as well.
+ Can handle clustering as well, but requires different tuning parameter
selection.
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Approximate sparsity

- Belloni et al (2014) prove asymptotic results under key assumption of
approximate sparsity:

E[Y; ] Z]= Zil 0 + Tyir

K

1/2
2 16, =0)<s, [(1//\/) Z[E[ry%.]] <C\/s/N

Jj=l

- CEFs are well-approximated by a sparse representation with s terms.
- Similar assumptions on CEF for D, and D,V
- Rate condition: (s log(max(K, N)))? /N — O. Number of terms needed
for approximation doesn’t grow too quickly relative to V.
- Sample splitting can weaken this requirement, but difficult to apply with
fixed effects which are common.
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- Rate condition requires choosing penalty loadings carefully.
« Belloni et al show that the ideal penalty loadings for estimation (not
prediction) are: A, ; o< \/(1/N) >, Zl-f-eiz where &; are the errors.

- Intuition: more regularization for variables whose “noise” correlates with
the error.
+ Feasible approach: run preliminary lasso to obtain estimates &;.

+ Allows for non-normal and heteroskedastic errors.

+ We apply an extension for clustered data in our applications (similar to
cluster robust SEs).
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N = 750 and 10, 000 iterations per DGP.

Methods to compare:
+ Single interaction (not shown due to huge bias).
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+ Post-lasso on just outcome (using cross-validation).
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Simulation results: bias
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Simulation results: RMSE
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&{ Empirical Applications



Regime type and remittances

« Escriba-Folch, Meseguer, and Wright (AJPS 2018) argue that higher levels of
incoming remittances ought to lead to higher levels of political protest,
but only in autocracies

20/ 24



Regime type and remittances

« Escriba-Folch, Meseguer, and Wright (AJPS 2018) argue that higher levels of
incoming remittances ought to lead to higher levels of political protest,
but only in autocracies

- “We show that remittances are associated with protests in autocratic
regimes, but not in democracies.” (890)

20/ 24



Regime type and remittances

« Escriba-Folch, Meseguer, and Wright (AJPS 2018) argue that higher levels of
incoming remittances ought to lead to higher levels of political protest,
but only in autocracies

- “We show that remittances are associated with protests in autocratic
regimes, but not in democracies.” (890)

+ Pair novel continuous measure of protest (based on dynamic IRT) with
World Development Indicators data on remittances remittances entering
a country

20/ 24



Regime type and remittances

« Escriba-Folch, Meseguer, and Wright (AJPS 2018) argue that higher levels of
incoming remittances ought to lead to higher levels of political protest,
but only in autocracies

- “We show that remittances are associated with protests in autocratic
regimes, but not in democracies.” (890)

+ Pair novel continuous measure of protest (based on dynamic IRT) with
World Development Indicators data on remittances remittances entering
a country

- 102 non-OECD countries (coded as democracies or autocracies) from 1976
to 2010

20/ 24



Regime type and remittances
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+ ¢Autocracy;; + WXy + 7, + o; + €54

+ Quantity of interest is B: coefficient on single interaction between
remittances (continuous) and autocracies (binary)

+ Model includes country (&) and five-year time period (T) fixed effects

- Xis a vector of time-varying covariates
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5/ Conclusion
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- When estimating interactions, interactions on “nuisance” covariates can
be important.
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be important.

- Single interaction model ~~» omitted interaction bias.

+ Fully moderated models (split sample on moderator) can avoid these bias.

- We propose an alternative when dimensionality of covariates is high:
post-double-selection using the lasso.

- Performs well against alternatives even in finite samples.
+ Post-double-selection more broadly useful for estimating treatment
effects with high-dimensional covariates.

» Next steps:

- Apply the split-sample approach of the double machine learning literature
to this setting to relax some assumptions.
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