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ABSTRACT
Factorial experiments are widely used to assess the marginal, joint, and interactive e!ects of multiple
concurrent factors. While a robust literature covers the design and analysis of these experiments, there
is less work on how to handle treatment noncompliance in this setting. To "ll this gap, we introduce a
new methodology that uses the potential outcomes framework for analyzing 2K factorial experiments with
noncompliance on any number of factors. This framework builds on and extends the literature on both
instrumental variables and factorial experiments in several ways. First, we de"ne novel, complier-speci"c
quantities of interest for this setting and show how to generalize key instrumental variables assumptions.
Second, we show how partial compliance across factors gives researchers a choice over di!erent types
of compliers to target in estimation. Third, we show how to conduct inference for these new estimands
from both the "nite-population and superpopulation asymptotic perspectives. Finally, we illustrate these
techniques by applying them to a "eld experiment on the e!ectiveness of di!erent forms of get-out-the-
vote canvassing. New easy-to-use, open-source software implements the methodology. Supplementary
materials for this article are available online.
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1. Introduction

Researchers across the social and biomedical sciences o!en
rely on factorial experiments to assess the e"ects of a number
of di"erent factors simultaneously. A 2K factorial experiment
randomly assigns units to 2K possible treatment combinations
of K binary factors. These designs have tremendous advantages.
First, they allow for the estimation of both the K main e"ects
of each factor and any interactions between the factors. Sec-
ond, they allow researchers to block certain causal pathways by
design and thus provide richer answers to scienti#c questions.
Third, they are also more e$cient than experiments that manip-
ulate one factor at a time (Montgomery 2013, chap. 5). Such
designs have a long history in statistics (Fisher 1935; Yates 1937)
and are o!en of great scienti#c and policy relevance. However,
only relatively recent literature has begun to address the design
and analysis of these experiments under the so-called potential
outcomes framework (Hainmueller, Hopkins, and Yamamoto
2014; Dasgupta, Pillai, and Rubin 2015).

A practical consideration with factorial experiments that
has received relatively little attention is noncompliance with
treatment assignment. This can occur when experimental units
self-select into treatment in de#ance of their randomized treat-
ment assignment. When this occurs, researchers o!en switch
focus to the intent-to-treat (ITT) e"ect of treatment assign-
ment. From a scienti#c and policy viewpoint, however, the
primary interest usually remains on the e"ect of the treat-
ment actually received. In the context of single-factor exper-
iments, researchers can address noncompliance through the
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use of instrumental variables (IV), which are less frequently
used in factorial designs (for exceptions, see Cheng and Small
2006; Blackwell 2017; Schochet 2020). Indeed, the properties
of IV estimators in single-factor experiments are well-studied
(Angrist, Imbens, and Rubin 1996), but the relevant estimands
and estimators have yet to be developed in the factorial case.

We address this problem by introducing a framework for
analyzing 2K factorial experiments with noncompliance on any
number of factors. Our contributions are several. First, we gen-
eralize the standard instrumental variables framework, includ-
ing the assumptions and estimands, from the single-factor case
to the factorial setting. In particular, we show how to extend
key assumptions like the exclusion restriction and monotonicity
and how to de#ne novel factorial IV estimands as ratios of
intent-to-treat e"ects of treatment assignment on the outcome
and treatment uptake. Unlike the single-factor case, there are
several IV estimands in the factorial setting: main e"ects, two-
way interactions, three-way interactions, and so on.

Second, we demonstrate how the multidimensional nature of
treatment in factorial experiments complicates the interpreta-
tion of these IV estimands. A respondent might comply with
their assigned value on one factor but not on another, and
the number of possible compliance types grows quickly with
K. To address these issues, we invoke an assumption novel to
the factorial setting—the “treatment exclusion restriction”—in
which the treatment receipt of a factor only depends on the
treatment assignment for that factor (Blackwell 2017). Under
this and the other IV assumptions, we show that IV estimands
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have an interpretation as the average factorial e"ects of treat-
ment received for the marginalized compliers—that is, those
respondents who comply with treatment assignment on the
active factor(s) for the main e"ect or interaction of interest,
marginalizing over the compliance status of the other factors.
One disadvantage of these e"ects is that the compliance group
changes across the di"erent factorial e"ects, and so we also
introduce e"ects for those that would comply with assignments
on all factors, whom we call perfect compliers, and develop
methods for comparing the di"erent compliance types in terms
of their covariate distributions.

Third, to conduct estimation and inference for these
IV quantities, we explore two di"erent frameworks: #nite-
population (also known as #nite-sample) inference and
superpopulation inference. Following Dasgupta, Pillai, and
Rubin (2015) and Kang, Peck, and Keele (2018), our #nite-
population approach treats the potential outcomes and causal
e"ects of interest as #xed quantities about a #nite population.
Variation and uncertainty in this approach come only from
the random assignment of treatment. We use recent work
on #nite-population asymptotics to derive a central limit
result for our intent-to-treat e"ects and use this to develop
a procedure for generating con#dence intervals based on
inverting a test involving the intent-to-treat e"ects (Fieller 1954;
Li and Ding 2017; Kang, Peck, and Keele 2018). Superpopulation
approaches, on the other hand, assume that the potential
outcomes are random draws from an in#nite superpopulation,
simplifying inference considerably at the price of plausibility.

We then apply our methodology to a get-out-the-vote exper-
iment from New Haven, CT designed to estimate the e"ects of
three treatment factors on voter turnout: door-to-door in person
canvassing, phone calls, and mailers (Gerber and Green 2000).
While households were randomly assigned to di"erent com-
binations of voter outreach, many households never received
the treatments because they failed to answer the phone or the
door. This noncompliance complicates estimation of treatment
e"ects when compliance rates di"ers across the types of contact.
Another empirical application, presented in the supplemen-
tal material, uses data from Blattman, Jamison, and Sheridan
(2017) to assess the e"ect of cash transfers and cognitive behav-
ioral therapy on various types of criminal or violent behavior in
the short and long term.

The article proceeds as follows. In Section 2, we introduce
the setting of factorial experiments with noncompliance and
outline our key assumptions, quantities of interest, and esti-
mators. Next, in Section 3, we develop the asymptotic proper-
ties of the estimators for the instrumental variable estimands
under a #nite-population framework and discuss how to apply
a technique from the literature on ratio estimators to construct
con#dence intervals. In Section 4, we describe how to compare
di"erent compliance groups in terms of their covariate distribu-
tions and present one way to potentially adjust for these di"er-
ences. We apply all of these techniques to the voter mobilization
application in Section 5 and end with concluding thoughts in
Section 6. In the Supplemental Materials, we also develop a
procedure for Bayesian inference in this context and present
simulation evidence for the validity of our con#dence interval
procedure.

2. Framework

We consider an experiment with K binary factors with levels
{−1, +1}, so that Z = {−1, +1}K is the set of all possible
treatment combinations. For instance, −1 may be the control
level and +1 the treatment level of a given factor. Thus, there
are L = 2K possible treatment assignments, which we order
{1, . . . , L} with z! = {z!1, . . . , z!K} being the levels of each
factor for treatment combination !. We de#ne the set of possible
treatment uptake vectors d!, which have the same values and
are ordered in the same manner as z! (i.e., d! = z!). Each
unit may have a di"erent potential outcome for each treatment
assignment and uptake combination, Yi(d, z). This is the value
of the outcome that unit i would have if they been assigned z and
taken d.

Experiments with noncompliance face the problem that
treatment uptake may di"er from treatment assignment, and
so treatment uptake will have potential outcomes as well. Let
Di(z) ∈ Z be the vector of treatment uptake on each factor if
unit i was assigned to treatment combination z. If Di(z) = z for
all i and z, then there is full compliance and inference can be
conducted as usual. We focus on the case where Di(z) #= z for
some i and z ∈ Z and de#ne the vector of potential outcomes
indicators for each treatment uptake combination as

Ri(z) = {I(Di(z) = d1), . . . , I(Di(z) = dL)}$ .

Let Ri(•) be the 2K × 2K matrix with !th row Ri(z!)
$. For

the intent-to-treat analyses, we will o!en work with the poten-
tial outcomes just setting the treatment assignment, Yi(z) ≡
Yi(z, Di(z)), and we collect the L potential outcomes for unit i
into the vector Y i(•) = {Yi(z1), . . . , Yi(zL)}$.

Let Wi! = 1 if Zi = z! and 0 otherwise and W i =
{Wi1, . . . , WiL} be the vector of indicators for all treatment
combinations. We assume a completely randomized design. In
particular, let W = (W1, . . . , WN) be the length LN vector of
assignment indicators for all units and F = {Y i(•), Ri(•), i =
1, . . . , N}. Consider a completely randomized design with N! =∑N

i=1 Wi! units assigned to treatment z!, with
∑L

!=1 N! = N,
de#ned formally below.

Assumption 1 (General completely randomized design).

P(W|F) =






(
N!∏L

!=1 N!!

)−1
if

∑N
i=1 Wi! = N! for all

! = 1, . . . , L
0 otherwise

Under this design, we have E{Wi!|F} = N!/N for all
z!, where the expectation here is over the randomization
distribution. We connect the potential outcomes to the
observed outcomes through a consistency assumption, Yobs

i =∑L
!=1 Wi!Yi(z!), Dobs

i = ∑L
!=1 Wi!Di(z!), and Robs

i =∑L
!=1 Wi!Ri(z!), which implicitly assumes the stable unit

treatment value assumption (Rubin 1980).
When there is noncompliance with treatment assignment,

randomization is not su$cient to identify the causal e"ect of
treatment uptake. Several ways of addressing noncompliance
have been proposed in the literature, all of which make
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additional assumptions beyond randomization. We follow one
strain of the literature, which started with Angrist, Imbens, and
Rubin (1996), and focus on two types of assumptions: mono-
tonicity and exclusion restrictions. We generalize these standard
instrumental variables assumptions to the factorial context.

Monotonicity is a restriction on the direction of the e"ect
of treatment assignment on treatment uptake. Let z+ be a K-
vector of all +1 and z− be a K-vector of all −1, with z+

k and
z−

k being representative kth entries. Furthermore, let z−k be the
vector z with the kth entry omitted and abuse notation to let
z = (z−k, zk). Let Dik(z) be the treatment uptake of unit i for
factor k when assigned to z.

Assumption 2 (Monotonicity). Dik(z−k, z+
k ) ≥ Dik(z−k, z−

k ) for
all k ∈ {1, . . . , K} and z−k.

This assumption states that there are no de#ers: individuals
who would have treatment uptake of −1 for factor k if assigned
to +1 of factor k and treatment uptake of +1 for factor k if
assigned to −1 of factor k, holding the assignment of the other
factors constant.

A standard approach in the instrumental variables literature
is to assume that treatment assignment has no direct e"ect on
the outcome, except through treatment receipt (Robins 1989;
Angrist, Imbens, and Rubin 1996). This assumption is typically
called the exclusion restriction, and it has a natural generaliza-
tion in the factorial setting. To distinguish it from a separate
exclusion restriction we de#ne below, we call this the outcome
exclusion restriction.

Assumption 3 (Outcome exclusion restriction). For all z, z′ ∈ Z ,
Yi(z, d) = Yi(z′, d).

This assumption is substantive and cannot be met simply
by experimental design. Finally, the factorial setting requires
a novel assumption for identi#cation of certain e"ects. First
proposed in Blackwell (2017) for the 2 × 2 factorial design, the
treatment exclusion restriction states that treatment uptake on
factor k only depends on the treatment assignment for factor k,
not other factors.

Assumption 4 (Treatment exclusion restriction). For all z ∈ Z ,
Dik(z) = Dik(zk) where zk is the kth entry of z.

This assumption restricts compliance to be factor-speci#c,
and prevents any factor from a"ecting the uptake on another
factor. Furthermore, it rules out interactive e"ects of treatment
assignment on treatment uptake in the sense that it assumes no
units that, say, comply on factor 1 when z2 = +1 but not when
z2 = −1. The treatment exclusion restriction is a substantive
assumption that restricts the #rst-stage relationship between
treatment assignment and treatment uptake. In the context of
the voter mobilization experiment, for instance, this would be
violated if being assigned to receive door-to-door contact caused
some respondents to pick up for a phone contact attempt when
they otherwise would not. While treatment exclusion is not
directly testable, some of its implications are observable. For
instance, it would rule out any e"ect of Zi1 on Di2 or any
interaction between Zi1 and Zi2 on Di2. Thus, one falsi#cation

test for this assumption is to check these various e"ects in the
assignment-uptake relationship, which we do in our empirical
example below. We discuss some implications for weakening
this assumption in the following section and outline further
weaker assumptions of interest in the Discussion.

2.1. Estimands

We begin by describing a set of standard linear factorial e"ects
in the #nite-population framework and then extend them to the
superpopulation viewpoint below. These e"ects re%ect di"er-
ences between one half of the potential outcomes for a particular
outcome versus the other. We can de#ne these e"ects through
the use of an L-dimensional vector g that has one half of its
entries at 1 and the other half at −1 as in Dasgupta, Pillai,
and Rubin (2015). There are L − 1 such vectors and the same
number of factorial e"ects. We can order these vectors such that
the #rst K represent the main e"ects of the K factors, so that
g1 corresponds to the main e"ect of factor 1, g2 corresponds
to the main e"ect of factor 2, and so on. The next

(K
2
)

vectors
will correspond to all two-factor interactions, and the following(K

3
)

vectors will correspond to all three-factor interactions, and
so on. This continues until gL−1 which corresponds to the K-
way interaction between all factors. For main e"ects, g j is a
vector giving the level of factor j for each of the L treatment
combinations. Interaction vectors are then created as element-
wise products of these main e"ect vectors. Note that these
vectors are mutually orthogonal.

With these vectors, we de#ne individual-level intent-to-treat
factorial e"ects for the outcome as

τij = 2−(K−1)g$
j Y i(•) = 2−(K−1)

L∑

!=1
gj!Yi(z!)

for i = 1, . . . , N and j = 1, . . . , L − 1, where gj! is the !th entry
of the g j vector. Here, τij is the jth factorial e"ect of treatment
assignment on the outcome for individual i. For main e"ects,
this is the e"ect of assignment to factor j, averaging over all
possible assignments to other factors. For example, when K = 2,
we have g1 = (+1, −1, +1, −1), so that

1
2

g$
1 Y i(•) = 1

2
{Yi(+1, +1) − Yi(−1, +1)}︸ ︷︷ ︸
e"ect of factor 1 when factor 2 is +1

+ 1
2

{Yi(+1, −1) − Yi(−1, −1)}︸ ︷︷ ︸
e"ect of factor 1 when factor 2 is −1

.

Writing the #nite-population averages of the potential out-
comes as Y(•) = N−1 ∑N

i=1 Y i(•), the #nite-population intent-
to-treat average factorial e"ects on the outcome are

τ j = 1
N

N∑

i=1
τij = 2−(K−1)g$

j Y(•).

These e"ects marginalize over treatment assignment on the
other factors, weighting each possible assignment equally. While
this is standard in the factorial design literature, recent work on
a speci#c type of factorial designs—conjoint experiments—has
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dealt with a more general estimand that allows for researcher-
speci#ed distributions for the assignments (Hainmueller, Hop-
kins, and Yamamoto 2014; de la Cuesta, Egami, and Imai 2021).
In the supplemental material, we discuss the straightforward
extension of the present approach to those more general esti-
mands. Finally, Egami and Imai (2019) proposed alternative
quantities of interest for interactions in factorial experiments,
but those average marginal interaction e"ects are more appro-
priate with factors with more than two levels.

These intent-to-treat factorial e"ects will not equal the true
e"ect of treatment uptake when some units do not comply with
the factors in the factorial e"ect. To correct this problem, the
instrumental variables literature will o!en de#ne the estimand
of interest as the ratio of the intent-to-treat e"ects on the out-
come and on treatment uptake (Wald 1940). In the factorial
setting, however, the de#nition of treatment uptake depends on
the factorial e"ect of interest. For example, for the main e"ect
of the #rst factor, we want the ITT for treatment uptake on the
#rst factor, whereas for the interaction between the #rst and
second factor, we want the ITT on the interaction between Di1
and Di2. More generally, let K(j) be the set of indices of the
“active” factors for factorial e"ect j. That is, K(j) are the set of
factors for which g j is estimating the main or interaction e"ects.
For the main e"ects, j = 1, . . . , K, this is just K(j) = {j}, but for
interactions, we have for example, K(K + 1) = {1, 2}, and so
on. De#ne the following potential outcome of treatment uptake
interaction corresponding to the jth factorial e"ect:

D̃ij(z) =
∏

k∈K(j)
Dik(z).

Again, for j ≤ K, we have D̃ij(z) = Dij(z). We can collect
these into a vector of potential outcomes for each treatment
assignment vector D̃ij(•) = {D̃ij(z1), . . . , D̃ij(zL)}$. Further,
as we show in supplemental material A, we can write these
as a function of the g vectors to obtain D̃ij(z) = g$

j Ri(z)
since, by construction, g j is equal to the product of the active
factors for each of the possible vectors of treatment uptake and
Ri(z) indicates which of these assignment vectors is selected
for unit i based on their compliance type. Furthermore, this
implies D̃ij(•) = Ri(•)g j. The individual-level ITT of treatment
assignment on treatment uptake for the jth factorial e"ect is thus

δij = 2−Kg$
j D̃ij(•) = 2−Kg$

j Ri(•)g j,

with δj = N−1 ∑N
i=1 δij. For example, in the two-factor case, we

have

δi3 = 1
4

{Di1(+1, +1)Di2(+1, +1) − Di1(−1, +1)Di2(−1, +1)}

− 1
4

{Di1(+1, −1)Di2(+1, −1) − Di1(−1, −1)Di2(−1, −1)} ,

so that δi3 is the (scaled) interactive e"ect of treatment
assignment on the multiplicative interaction between the
two treatment uptakes. We can also write this estimand as a
linear function of the potential outcomes for each assignment,
δij = ∑L

!=1 2−Kgj!g$
j Ri(z!), where the equality comes from

D̃ij(z) = g$
j Ri(z) and gj! is the !th entry of g j.

We can now de#ne the jth IV factorial e"ect as

φj = τ j

δj
.

We assume that δj > 0, which under treatment exclusion means
that there are some compliers for the factors involved in the jth
e"ect. Without further assumptions, φj is just the ratio of two
intent-to-treat factorial e"ects. We are able to gain an even more
substantive interpretation under various exclusion restrictions
on the outcome and the treatment uptake, as described in the
next section.

2.2. Interpretation of the Estimands Under IV Assumptions

Under the IV assumptions, the various e"ects de#ned above
have speci#c interpretations in terms of principal strata, oth-
erwise known as compliance types. Under treatment exclusion
and monotonicity, each unit can be categorized into one of
3K types based on how treatment uptake depends on treat-
ment assignment. Note that without the treatment exclusion
restriction we would have many more compliance types, as a
unit’s compliance to a given factor could depend upon the 2K−1

possible assignments to the other factors. Thus, the treatment
exclusion assumption essentially makes solutions based on com-
pliance strata more tractable. Let Ti ∈ TK = {c, a, n}K be the K-
length vector of compliance type for unit i on all K factors. Here,
the compliance types of each factor are complier (c), always-
taker (a), and never-taker (n), de#ned as follows:

Tik =






c if Dik(+1) = +1, Dik(−1) = −1
a if Dik(+1) = +1, Dik(−1) = +1
n if Dik(+1) = −1, Dik(−1) = −1.

Our estimands relate to these quantities in two key ways.
First, under treatment exclusion and monotonicity, for any fac-
torial e"ect, we have D̃ij(•) = g j when Tik = c for all k ∈
K(j) and otherwise D̃ij(•) is a vector that is orthogonal to g j.
We de#ne Cij = ∏

k∈K(j) I (Tik = c), an indicator for being a
complier on all the active factors for e"ect j. Then for all j, we
have δij = Cij and δj = N−1 ∑N

i=1 Cij. We provide a more
formal proof of this result in supplemental material A. In other
words, the ITTs for treatment uptake measure compliance with
the active factors for a particular factorial e"ect.

Second, under monotonicity and the treatment and outcome
exclusion restrictions, the jth outcome ITT, τij, is 0 for all units
who do not comply on all the active factors in e"ect j, allowing us
to relate these e"ects to the conditional e"ect among compliers.
Let Nc

j = ∑N
i=1 Cij. Noting that δj = Nc

j /N, we have the
following:

τ j = 1
N

N∑

i=1
Cijτij =

∑N
i=1 Cijτij

Nc
j

× δj.

Combining these two facts, the ratio of the ITT e"ects under the
IV assumptions (Assumptions 2, 3, and 4) is

φj = 1
Nc

j

N∑

i=1
Cijτij,
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which we refer to as the jth marginalized-complier average
factorial e"ect (MCAFE). Because these e"ects condition on
compliance for the active factors, we can interpret this as the
average of the jth factorial e"ect of treatment uptake of factors in
K(j) on the outcome among those units who comply with those
active factors, marginalizing over the treatment assignments
on other factors. For a main e"ect, for instance, we show in
supplemental material A that

φj = 1
2K−1

∑

z−j∈Z−j



 1
Nc

j

N∑

i=1
Cij

{
Yi(dj = +1, z−j) − Yi(dj = −1, z−j)

}


 ,

where z−j is the assignment vector z less the entry for factor
j and Z−j is the associated set of possible such assignments.
Here, we slightly abuse notation to emphasize that it is truly
treatment uptake, and not just assignment for factor j. This
interpretation, while straightforward to derive, is slightly odd
because it combines the e"ects of treatment uptake for some
factors and treatment assignment for others.

How can we interpret the MCAFEs in terms of the factorial
e"ects of treatment uptake rather than a mix of treatment uptake
and assignment? We can invoke the exclusion restrictions to
write the main e"ect MCAFEs, for instance, as

φj = 1
2K−1

∑

z−j

(
1

Nc
j

N∑

i=1
Cij

{
Yi(dj = +1, Di,−j(z−j))

− Yi(dj = −1, Di,−j(z−j))
}
)

,

=
∑

d−j

(
1

Nc
j

N∑

i=1
ωij(d−j)Cij

{
Yi(dj = +1, d−j)

− Yi(dj = −1, d−j)
}
)

,

where

ωij(d−j) = 1
2K−1

∑

z−j

I
{

Di,−j(z−j) = d−j
}

,

∑

d−j

ωij(d−j) = 1.

We again commit slight abuse of notation to convey the meaning
in terms of treatment uptake rather than assignment. Thus,
we can see that the MCAFE for the main e"ect of factor j is
an average of complier factorial e"ects for treatment uptake
with each individual having di"erent weights for marginalizing
over the uptake pro#les. These weights depend on the unit’s
compliance type on the other factors. Interpretations of the
higher-order MCAFEs are similar, albeit more complicated.

Of course, treatment exclusion is a strong assumption that
may not hold in practice, so it is helpful to understand how
we can interpret these IV estimands under weaker assumptions.
In supplemental materials C, we show the IV estimands retain
a similar, though much more complicated, interpretation as a
weighted average of e"ects under a weaker version of the treat-
ment exclusion assumption. Unfortunately, the interpretation of
interactions under this weaker assumption is much less clear,

which highlights how identifying interactive e"ects of treatment
uptake requires restrictions on interactions of treatment assign-
ment on treatment uptake.

2.3. Disadvantages of MCAFEs

One important disadvantage of marginalized-complier e"ects
is that the conditioning set changes depending on the factorial
e"ect under study. This makes, for instance, the main e"ect of
factor 1 and the interaction e"ect of factor 1 and 2 di$cult to
compare. The #rst MCAFE will only condition on compliers for
factor 1 and average over compliance groups for factor 2, while
the latter will focus on compliers for factor 1 and factor 2. If the
complier groups di"er signi#cantly between factorial e"ects, it is
impossible to tell if di"erences between factorial e"ects are due
to true di"erences in average e"ects or simply manifestations of
heterogeneous treatment e"ects across compliance types. This
is especially problematic for factorial experiments, where much
of the value comes from comparing e"ects both within orders
(the e"ect of factor 1 vs the e"ect of factor 2) and between them
(main e"ects vs interactions).

2.4. Perfect Complier E!ects

One way to avoid the disadvantages of the e"ects for marginal
compliers is to estimate e"ects for those units that would comply
with all factors—whom we call perfect compliers. The main
advantage of this approach is that every factorial e"ect is well-
de#ned for the perfect compliers. Thus, comparing di"erent
factorial e"ects in this subset will not be driven by changes in
the compliance groups as with marginal compliers. One of the
main disadvantages of working with perfect compliers is that,
by de#nition, there are fewer of them than marginal compli-
ers, leading to greater uncertainty in our inferences. Another
disadvantage is that the IV estimands for perfect compliers
are not simply a ratio of ITT e"ects on the outcome to ITT
e"ects on treatment uptake. At #rst glance, it may appear that
focusing on perfect compliers simpli#es our task since we have
reduced our very complicated compliance problem to a single
binary compliance problem. Unfortunately, while there is only
one way to be a perfect complier, there are still many ways to
be a non-perfect-complier and so isolating just the e"ects for
perfect compliers requires more care than simply using existing
2K factorial methods.

To start, we can (given all potential outcomes) identify the
perfect compliers by applying the K-way interaction to any vec-
tor of potential outcomes for speci#c treatment uptake vectors
under the IV assumptions discussed earlier. Speci#cally, let Pi =∏K

k=1 I (Tik = c) be an indicator for being a perfect complier.
From the above discussion, the marginalized compliers for the
K-way interaction will be the perfect compliers, so δi,L−1 = Pi.
In order to identify the potential outcomes among the per-
fect compliers, we must modify the ITT for the outcome. Let
Hi(z) = Yi(z)Ri(z) so that

Hi(z) = {Yi(z)I(Di(z) = d1), . . . , Yi(z)I(Di(z) = dL)}$ ,

and let Hi(•) be the L × L matrix with !th row Hi(z!)
$. We

show in supplemental material A that, under Assumptions 2– 4,
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we have

gL−1 ◦ Hi(•)$gL−1 = Yd
i (•)Pi,

where Yd
i (•) = {Yi(d1), . . . , Yi(dL)} are the vector of potential

outcomes as functions of treatment uptake alone. Thus, we can
write the jth ITT for unit i, if unit i is a perfect complier, as

τij,p = 2−(K−1)
(

g j ◦ gL−1

)$
Hi(•)$gL−1 = Piτij.

In order to isolate the e"ects for perfect compliers, τij,p involves
a complicated interaction e"ect of treatment assignment on
products of the outcome and treatment uptake, rather than
sharing the form of the typical factorial e"ects on Yi. As with
τij and δij, we can write this quantity as a linear function of the
potential outcomes for each assignment,

τij,p =
L∑

!=1
gL−1,!

(
g j ◦ gL−1

)$
Hi(z!),

again where gL−1,! is the !th entry in the gL−1 vector. Let H(•) =
N−1 ∑N

i=1 Hi(•) the be population average of Hi(•). Then we
can de#ne the population e"ects as

τ j,p = 2−(K−1)
(

g j ◦ gL−1

)$
H(•)$gL−1

= 1
N

∑N
i=1 Piτij =

(
1

Np

∑N
i=1 Piτij

) Np
N ,

where Np is the number of perfect compliers in the #nite pop-
ulation. Noting from our earlier discussion that δL−1 = Np/N,
we can de#ne

γ j = τ j,p

δL−1
= 1

Np

N∑

i=1
Piτij

The γ j represents the jth average factorial e"ect among the
perfect compliers, which we refer to as the jth perfect complier
average factorial e"ect (PCAFE). For both the PCAFE and the
MCAFE, we cannot identify who is and is not a complier, but in
Section 4.1 we show how to estimate covariate pro#les of these
groups to aid in the interpretability of these e"ects.

2.5. Superpopulation Estimands

We now take an alternative point of view—that the sample of
units is actually a draw from an in#nite superpopulation. Now,
the potential outcomes are themselves random variables and not
#xed quantities as in the #nite-population point of view. Under
treatment exclusion in particular, we de#ne the probability of
a particular compliance type, t ∈ TK as ρt = P(Ti = t). We
can relate the #nite-population quantities δk to these values by
considering the limit of a series of growing #nite populations
with units sampled from a larger #xed population. For example,
for any main e"ect, we have

lim
N→∞

δk =
∑

t:tk=c
ρt = P(Cik = 1).

Let E[·] be the expectation operator that averages over both
randomization and sampling from the superpopulation. Then,

we can de#ne the superpopulation version of the marginalized-
complier average factorial e"ect as

φ
sp
j = E[τij|Cij = 1] = lim

N→∞
φj.

We can de#ne a similar superpopulation version of the perfect
complier average factorial e"ect as

γ
sp
j = E[τij|Pi = 1] = lim

N→∞
γ j.

Finally, we can de#ne τ
sp
j , τ sp

j,p, and δ
sp
j in a similar manner.

2.6. Estimators

We can de#ne the following natural in-sample estimators for the
population (of units in the study) or superpopulation potential
outcomes:

Yobs
(z!) = 1

N!

N∑

i=1
Wi!Yobs

i , Robs
(z!) = 1

N!

N∑

i=1
Wi!Robs

i ,

Hobs
(z!) = 1

N!

N∑

i=1
Wi!Hi(z!).

These lead to the natural estimators for the various ITT e"ects:

τ̂j =
L∑

!=1
2−(K−1)gj!Yobs

(z!), δ̂j =
L∑

!=1
2−Kgj!g$

j Robs
(z!),

τ̂j,p =
L∑

!=1
2−(K−1)gL−1,!

(
g j ◦ gL−1

)$
Hobs

(z!).

Under a completely randomized design, we have
E

[
Yobs

(z)|F
]

= Y(z), which implies that τ̂j is unbiased for
τ j when averaging over the randomization distribution. The
same result holds for δ̂j and τ̂j,p for δj and τ j,p, respectively.
Importantly, these results do not depend on any of the
instrumental variable assumptions and hold by experimental
design. Finally, we can de#ne estimators for the MCAFE and
the PCAFE as:

φ̂j = τ̂j/̂δj γ̂j = τ̂j,p/̂δL−1.

Each of these estimators has a similar form to the classic Wald
estimator: ratios of ITT e"ects on the outcome to ITT e"ects on
(some function of) treatment uptake.

3. Inference

Inference for instrumental variables estimators has generally
followed two broad approaches. First, and more traditionally,
one can assume that the data are a random sample from an
in#nite superpopulation and derive the asymptotic distribution
of the various estimators from the central limit theorem and the
delta method. This approach has the advantage that the subsam-
ples corresponding to each treatment assignment vector, z!, can
be thought of as independent random samples from di"erent
population distributions, which greatly simpli#es derivation of
the large-sample distribution of the estimators. This approach
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considers variation in the estimates both from the randomiza-
tion of Zi and the random sampling from the superpopulation.
The second approach to inference is to take the #nite-population
quantities φj and γ j as the quantities of interest and consider the
behavior of the estimators over the distribution of the treatment
assignments induced by randomization (Fisher 1935; Imbens
and Rosenbaum 2005). This approach has the advantage that it
hews closely to the design of the original experiment and is well-
de#ned even when it is di$cult to imagine a hypothetical super-
population. Below, we present results for the #nite-population
setting and then show how they change when targeting inference
to a superpopulation.

Once an asymptotic distribution has been established, there
are several ways to construct con#dence intervals for the types
of ratio estimators we de#ned above. The standard way to con-
struct con#dence intervals for, say, φ̂j would be to use the delta
method on the ratio of τ̂j and δ̂j to obtain an estimator of its
asymptotic variance, V̂j. Then, a 95% con#dence interval could
be obtained from φ̂j ± 1.96 × V̂j. Unfortunately, this approach,
which is based on a Taylor expansion, can be a poor approxi-
mation when the denominator is close to 0 (in our case, when
there are relatively few compliers). An alternative approach,
#rst proposed by Fieller (1954), uses a carefully chosen test
statistic and inverts it to construct the con#dence intervals. The
key to this approach is that the variance of the test statistic
under the null can be written as a quadratic function of a null
hypothesis of the true e"ect, allowing the con#dence intervals
to achieve nominal coverage even when the denominator is
close to zero. The tradeo" is that these con#dence intervals
can have in#nite length in some samples. See supplementary
material E for simulations exploring the performance of the dif-
ferent con#dence interval methods and for MCAFE vs PCAFE
estimators.

3.1. Expectation and Variances in the Finite Population

Although we cannot directly calculate the expectations and
variances of our ratio estimators in the #nite population, we
can derive these properties for their numerators and denom-
inators. Let U i(z) = {Hi(z), Ri(z)}$ be the vector of all 2L
potential outcomes for unit i under treatment assignment z and
let U(z) be the vector of 2L #nite-population means. Similarly,
let Û(z) be the vector of estimated means based on treatment
assignment. All of the ITT quantities of interest de#ned in
previous sections are linear combinations of these potential
outcomes.

Combining all of the above estimands, we are interested in
r = 3L − 3 of these e"ects; L − 1 intent-to-treat factorial e"ects
on the outcome, τ j, L − 1 e"ects among the perfect compliers,
τ j,p, and L − 1 intent-to-treat e"ects on the treatment uptake
indicators, δj. As in Li and Ding (2017), we can write our vector
of estimands using coe$cient matrices Q! ∈ Rr×2L so that we
have

θ i =
L∑

!=1
Q!U i(z!)

θ i = {τi1, . . . , τi,L−1, τi1,p, . . . , τi,L−1,p, δi1, . . . , δi,L−1}$.

Averaging over units, we can write the vector of estimands as

θ =
L∑

!=1
Q!U(z!),

θ = {τ 1, . . . , τL−1, τ 1,p, . . . , τL−1,p, δ1, . . . , δL−1}$.

Furthermore, we can write the vector of estimators for these
quantities de#ned above as θ̂ = ∑L

!=1 Q!Û(z!), where the #rst
entry of θ̂ is τ̂1 and the other values are de#ned similarly. For
our particular quantities of interest, we have

Q! =





2−(K−1)g1!1$
L 0$

L
...

...
2−(K−1)gL−1,!1$

L 0$
L

2−(K−1)gL−1,!(g1 ◦ gL−1)
$ 0$

L
...

...
2−(K−1)gL−1,!(gL−1 ◦ gL−1)

$ 0$
L

0$
L 2−Kg1!g$

1
...

...
0$

L 2−KgL−1,!g$
L−1





,

where the exact formulations of each block come from the
previous de#nitions of the estimands.

To assess the asymptotic distribution of the these estimators,
we now de#ne several variance and covariance terms. In partic-
ular, let

S2
! = 1

N − 1

N∑

i=1
[U i(z!) − U(z!)][U i(z!) − U(z!)]$

and

S2
θ = 1

N − 1

N∑

i=1
[θ i − θ ][θ i − θ]$.

The #rst of these, S2
! is the variance of the potential outcomes

under treatment assignment z!, and the second, S2
θ , is the

covariance matrix of the individual-level treatment e"ects. Note
that while S2

! can be identi#ed under the present experimental
design, S2

θ cannot be identi#ed because it would require
observing individual-level treatment e"ects. In particular, we
can use the sample variance within each treatment arm to
estimate S2

!,

s2
! = 1

N! − 1
∑

i:Wi!=1

{
U i − Û(z!)

} {
U i − Û(z!)

}$ .

Under Assumption 1 and over the randomization distribution,
θ̂ has mean θ and covariance

cov(̂θ) =
L∑

!=1

1
N!

Q!S2
!Q$

! − 1
N S2

θ ,

by Theorem 3 of Li and Ding (2017). This result is a #nite-
population result and requires no assumptions on the data
generating process of the outcomes.

A conservative estimator for the covariance of θ̂ can be
V̂ = ∑L

!=1 N−1
! Q!s2

!Q$
! . Given the above result, this will
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overestimate the covariance of θ̂ by N−1S2
θ . This latter quantity

is generally unestimable because estimating it would require
observing the joint distribution of di"erent potential outcomes,
{U i(z1), . . . , U i(zL)}. Under the additional stringent assump-
tion that all of the individual-level e"ects are additive, S2

θ will
be equal to 0 because the e"ects do not vary across units. In
the IV context, however, additive treatment e"ects are awkward
because they would rule out heterogeneous treatment e"ects
that the compliance framework is designed to address.

3.2. Asymptotic Distribution Under a Finite-Population
Approach

In this subsection, we take a #nite-population approach to
asymptotics that treats (N = {U1(z1), . . . , UN(zL)} as a set
of #xed population quantities and all randomness comes from
the distribution of Zi. To perform asymptotics in this setting,
we embed (N into a hypothetical sequence of #nite populations
that grow in size and investigate the properties of our estimators
along that sequence (see Lehmann and D’Abrera 1975; Lehmann
1999; Li and Ding 2017, for more on this approach). We assume
that we are in a setting where as N increases, N! also increases
without bound for all !. In particular, we assume that N!/N has
a positive limiting value for all ! throughout.

We start by getting a consistency result.

Theorem 1 (Consistency). Under Assumption 1 and the assump-
tion that (1 − N!/N)S2

!/N! → 0 as N → ∞, θ̂ − θ
p−→ 0 as

N → ∞.

Proof. From #nite population results in, for instance, Rosén
(1964) and Scott and Wu (1981), the assumption that (1 −
N!/N)S2

!/N! → 0 gives us that Û(z) − U(z) p−→ 0 as N → ∞
for all z. Therefore,

θ̂ − θ =
L∑

!=1
Q!Û(z!) −

L∑

!=1
Q!U(z!)

=
L∑

!=1
Q!

(
Û(z!) − U(z!)

) p−→ 0.

We now move on to distributional results. In order to conduct
inference on θ̂ , we need to know not only its moments, but also

its distribution. While it is possible to computationally approx-
imate the randomization distribution of θ̂ under a null hypoth-
esis about θ , this approach can be quite complicated and even
infeasible when entertaining non-sharp null hypotheses (Kang,
Peck, and Keele 2018). Instead, we rely on #nite-population
asymptotics to derive an approximation of the distribution θ̂
as in Li and Ding (2017) and Kang, Peck, and Keele (2018).
In this framework, we can derive asymptotic normality of our
estimators under a limitation on how much a unit can dominate
the population variance. In particular, de#ne the maximum
squared distance of the qth coordinate of Q!U i(z!) from its
population mean,

m!(q) = max1≤i≤N
[
Q!U i(z!) − Q!U(z!)

]2
q 1 ≤ q ≤ r,

the #nite-population variance of the qth coordinate of Q!U i(z!),

v!(q) = 1
N − 1

N∑

i=1

[
Q!U i(z!) − Q!U(z)!

]2
q 1 ≤ q ≤ r,

and the #nite-population variance of the qth coordinate of θ ,

vθ (q) = 1
N − 1

N∑

i=1
[θ i − θ]2

q 1 ≤ q ≤ r.

Li and Ding (2017) derive the following assumptions that are
su$cient for asymptotic normality.

Assumption 5. As N → ∞,

max!max1≤q≤r
1

N2
!

m!(q)
∑

!′ N−1
!′ v!′(q) − N−1vθ (q)

→ 0

Roughly speaking, this assumption limits how a particular
unit can dominate the variance of Q!U i(z!), uniformly across
all assignment vectors and components of θ . While this assump-
tion is general and di$cult to interpret, Li and Ding (2017)
demonstrate several more interpretable conditions that imply
this assumption. Finally, we impose a regularity condition on the
correlation matrix of θ̂ and derive the asymptotic distribution of
the (standardized) ITT estimators.

Assumption 6. The correlation matrix of θ̂ has limiting value ".

Lemma 1. Under Assumption 1, 5 and 6, by Theorem 4 of Li
and Ding (2017), we have

(
τ̂1 − τ 1√

var(̂τ1)
, . . . , τ̂L−1 − τL−1√

var(̂τL−1)
,
τ̂1,p − τ 1,p√

var(̂τ1,p)
, . . . ,

τ̂L−1,p − τL−1,p√
var(̂τL−1,p)

, δ̂1 − δ1√
var(̂δ1)

, . . . , δ̂L−1 − δL−1√
var(̂δL−1)

)
d−→ N(0, ").

These results do not rely on any of the instrumental variable
assumptions (monotonicity and the exclusion restrictions), and
so we can conduct inference on these quantities as ITT e"ects
even if the IV assumptions are suspect. These quantities will
gain the additional interpretations in terms of complier e"ects,
as discussed earlier, if the IV assumptions hold.

To get an asymptotic, #nite-population distributional result
for our IV estimators, which are all ratio estimators, we can use
a #nite-population delta method (Pashley 2019).

Lemma 2. Under Assumption 1, 5, and 6, assumptions for
Theorem 1, and also assuming that δj has a nonzero limiting
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value, we have the following asymptotic normality result for our
MCAFE estimators:

φ̂j − φj√
1
δ

2
j

var(̂τj) + φ
2
j

1
δ

2
j

var(̂δj) − 2φj
1
δ

2
j

cov(̂τj, δ̂j)

d−→ N(0, 1).

It is straightforward to extend this result to the PCAFEs.
Although the delta method is typically associated with a super-
population perspective, this is a #nite-population asymptotic
result only requiring standard assumptions on the asymptotic
variance and that δj has a nonzero limiting value, which under
monotonicity is the same as assuming that the proportion of
compliers for that particular e"ect has a nonzero limiting value.
We can construct con#dence intervals directly from this distri-
bution by estimating the variance as 1

δ̂2
j

v̂ar(̂τj) + φ̂2
j

1
δ̂2

j
v̂ar(̂δj) −

2φ̂j
1
δ̂2

j
ĉov(̂τj, δ̂j). However, we employ a useful trick in the next

section to create intervals with potential bene#ts in terms of
coverage and behavior with small compliance probabilities.

Before moving on to this method, we give a #nal consistency
result for our ratio estimators:

Lemma 3. Assume either of the following two sets of conditions:

(a) the assumptions of Theorem 1 and the additional assump-
tions that all components of θ have #nite limiting values,
and in particular nonzero limiting values for the δj; OR

(b) the assumptions of Lemma 2 and the assumption that S2
! and

S2
θ have #nite limiting values.

Then φ̂j − φj
p−→ 0 and γ̂j − γ j

p−→ 0 as N → ∞, for all j ∈
{1, . . . , L − 1}.

Lemma 3 requires additional regularity conditions on the
sequence of #nite populations beyond those required in The-
orem 1 to avoid situations where the ratio of the population
ITTs diverges as N → ∞. We provide a proof of this result in
supplemental material A.

3.3. Constructing Con"dence Intervals for IV E!ects:
Fieller’s Method

The results of the previous section can be used directly to
generate con#dence intervals. Here we present a method to
create intervals originally from Fieller (1954) and used in Kang,
Peck, and Keele (2018) and Li and Ding (2017) in the context
of instrumental variables, which performs better with low rates
of compliance. We can begin from the result of Lemma 2 to
derive this method but it is traditional instead to consider the
hypothesis test of a particular value, H0 : φj = φj0, which can
be rewritten as H0 : τ j −φj0δj = 0. Following Fieller (1954) and
Kang, Peck, and Keele (2018), we use the following test statistic
to assess this hypothesis:,

T(φj0) = τ̂j − φj0δ̂j.

We can use the above asymptotic results to derive the (asymp-
totic) variance of this statistic as

σ 2(φj0) = var(̂τj) + φ2
j0var(̂δj) − 2φj0cov(̂τj, δ̂j).

We can then obtain v̂ar(̂τj), v̂ar(̂δj), and ĉov(̂τj, δ̂j) from V̂ for all
j and create the following estimator for the variance of the test
statistic:

σ̂ 2(φj0) = v̂ar(̂τj) + φ2
j0v̂ar(̂δj) − 2φj0ĉov(̂τj, δ̂j).

Under the above results about the approximate normality of
these quantities, the typical way to assess this hypothesis is to
reject the null if |T(φj0)/σ̂ (φj0)| ≥ z1−α/2 for some prespeci#ed
choice of α. We could then construct a 1−α con#dence interval
for this quantity by inverting the test:
{
φj0 :

∣∣∣∣
T(φj0)

σ̂ (φj0)

∣∣∣∣ ≤ z1−α/2

}
=

{
φj0 : T(φj0)

2 ≤ σ̂ 2(φj0)z2
1−α/2

}
.

Noting that T(φj0)2 = (̂τ 2
j − 2φj0τ̂ĵδj + φ2

j0δ̂
2
j ), this implies that

we can generate the 1 − α con#dence interval by #nding: {φj0 :
aφ2

j0 + bφj0 + c < 0}, where

a = δ̂2
j − z2

1−α/2v̂ar(̂δj)

b = −2
(
τ̂ĵδj − z2

1−α/2ĉov(̂τj, δ̂j)
)

c = τ̂ 2
j − z2

1−α/2v̂ar(̂τj).

As in the case of Fieller (1954), Li and Ding (2017), and Kang,
Peck, and Keele (2018), the type of interval generated by this
quadratic inequality can take several forms: closed interval,
disjoint union of tail intervals, or an in#nite-length interval that
covers the real line. A similar derivation holds for hypotheses
about the perfect complier e"ects, γ j, replacing τ̂j with τ̂j,p.

3.4. Inference Under a Superpopulation Model

If we assume that the data are random samples from an in#nite
superpopulation, some aspects of inference become simpler. In
particular, we can view the observations of Yi with Zi = z
to be a random sample from the superpopulation distribution
of Yi(z), independent from the samples of the other treatment
assignments. Then, under mild regularity conditions

√
N (̂θ−θ)

converges in distribution to N(0, V), where V is the superpop-
ulation variance of θ̂ , and V̂ is a consistent estimator for the
asymptotic covariance of θ̂ . One can derive con#dence intervals
for the superpopulation parameters using V̂ and applying either
the above delta method or test-inversion methods.

In supplemental material D we describe a Bayesian approach
to inference in this setting as that is a popular way to study both
factorial experiments (Dasgupta, Pillai, and Rubin 2015) and
instrumental variables (Imbens and Rubin 1997).

4. Comparing Compliance Types

One complication of the factorial setting with noncompliance
is the multitude of possible compliance types. We discussed
earlier how this made comparing MCAFEs di$cult because the
underlying compliance group changes from one e"ect to the
next. The solution of focusing on perfect compliers typically has
the disadvantage of more variable estimates due to restricting
the estimates to a smaller compliance group. In this section,
we suggest an alternative path for comparing compliance types:
through their possibly varying covariate distributions. We pro-
vide two ways of making these comparisons. First, we investigate
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how the distribution of the covariates changes across di"erent
compliance groups. Second, we show one method for adjusting
each of the MCAFEs for di"erences in the distribution of the
covariates. We show that under very strong assumptions, the
latter can be justi#ed as generalizing from complier-speci#c
e"ects to the entire sample.

4.1. Covariate Pro"les of the Compliance Groups

A common approach to analyzing complier average treatment
e"ects is to pro#le the compliers in terms of background charac-
teristics. In settings with a single treatment factor, Abadie (2003)
showed how to identify the expectations of arbitrary functions
of covariates among the compliers. We extend those ideas to the
factorial setting.

Let Xi be a vector of observed covariates and ν(Xi) be a
known scalar function of those covariates. We now de#ne an
alternative ITT on the product of the this function and the
factorial treatment uptake variables, D̃ij:

δj(ν(Xi)) = 1
N

N∑

i=1
2−Kg$

j ν(Xi)D̃ij(•).

By similar arguments to ITT on treatment uptake, we can show
that

δj(ν(Xi)) =
(

1
Nc

j

N∑

i=1
Cijν(Xi)

)

δj,

so this ITT is the mean of ν(Xi) among the marginal compli-
ers for e"ect j multiplied by the proportion of those marginal
compliers. Thus, we can recover the means of functions of
covariates in the compliance groups with δj(ν(Xi))/δj. To obtain
estimates in our observed samples, we simply replace each of
these population quantities with their sample counterparts.

In our empirical example, we use this approach to show
how the means of various covariates in each compliance group
compare to the overall #nite population. Of course, it is straight-
forward to make these comparisons based on higher moments
with the correct choice of ν(·).

4.2. Adjusting Complier E!ects with Compliance Weights

The previous method will allow us to compare the covariate
pro#les of each compliance group, but this does not give us
direct information on how these di"erences translate into dif-
ferent e"ects. We now describe one method for putting all the
MCAFEs on a similar footing by reweighting them to have the
same covariate distribution. We hope that a!er this reweighting,
any remaining variation in estimated e"ects is not due to com-
positional di"erences in compliance groups on the observed
covariates. Under a much stronger (and o!en implausible) gen-
eralizability assumption, this procedure will estimate the aver-
age factorials e"ects if compliance (for the given active factors)
was forced for all units. These ideas build on the inverse compli-
ance score weighting approach of Aronow and Carnegie (2013),
who used a similar methodology to generalize the local average
treatment e"ect (LATE) to the average treatment e"ect (ATE) in
settings with K = 1.

We describe the method using the superpopulation frame-
work, to make the notation and interpretation simpler. We
de#ne the following compliance weights:

ωj(x) = P(Cij = c)
P(Cij = c|Xi = x)

,

which are inversely proportional to the probability of being a
marginal complier for e"ect j conditional on Xi = x. Let ωij =
ωj(Xi). Then, it is straightforward to show that

E[ωijτij|Cij = c] =
∑

x
E[τij|Cij = c, Xi = x]P(Xi = x).

This shows that the jth weighted MCAFE is a weighted average
of conditional MCAFEs where the weights are based on the
population distribution of the covariates, not the marginal com-
pliers distribution of the covariates. Thus, we have adjusted for
compositional di"erences related to the covariate distributions
in each underlying MCAFE compliance group.

But without further assumptions the conditional MCAFEs
are still not comparable because the compliance groups are dif-
ferent for di"erent e"ects. We can make an additional assump-
tion that will make the weighted MCAFEs comparable. Let τ ∗

ij
be the jth factorial e"ect for unit i if they were forced to comply
with treatment assignment for the active factors in the jth e"ect
regardless of their natural compliance type. Then, we de#ne the
following latent ignorability of compliance assumption as

E[τ ∗
ij |Xi = x] = E[τij|Cij = c, Xi = x]. (1)

This assumption says that for units with the same values of the
covariates, the average factorial e"ect among marginal compli-
ers is the same as the average factorial e"ect if everyone with
Xi = x were forced to comply with the active factors in the jth
e"ect. This assumption is quite strong and may be implausible
in many settings. To gain additional intuition, we can use two
assumptions which together are stronger but more interpretable.
Let T∗

i,j be the vector of length K indicating the compliance type
for unit i if they are forced to comply for active factors in e"ect
j. Then, for any t such that tk = c for all k ∈ K(j), two su$cient
assumptions for 1 are

P[T∗
i,j = t|Xi = x] = P[Ti = t|Cij = c, Xi = x], (2)

E[τ ∗
ij |T∗

i,j = t, Xi = x] = E[τij|Cij = c, Ti = t, Xi = x]. (3)
Assumption (2) says that if we can force noncompliers for the
active factors in e"ect j to comply on those factors, then the
distribution of their full compliance types will be the same as the
distribution for those who naturally comply to on those factors,
conditional on Xi. Assumption (3) says that units with the same
full compliance type with forced (or natural) compliance for
active factors in e"ect j will have the same average factorial e"ect
for factor j as those who would naturally comply, conditional on
Xi. These assumptions require considerable stability in compli-
ance types and e"ects across the natural and forced compliance
settings that may be di$cult to sustain in many applications.

In practice, we can estimate these weights by replacing the
population quantities with their sample counterparts. In the
empirical application, we stratify the units based on a discrete
set of covariates and estimate all quantities within these strata.
Aronow and Carnegie (2013) present a parametric approach to
estimating these weights when K = 1, which could be extended
to our setting as well.
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5. Empirical Application: The E!ect of Political
Canvassing on Voter Turnout

A large literature in political science uses #eld experiments to
examine the e"ectiveness of various strategies for encourag-
ing voter turnout in elections. These strategies include phone
calls, door-to-door canvassing, mailers, and more. A ubiquitous
problem with these #eld experiments is noncompliance because
relatively few people are willing and able to speak with political
canvassers on the phone or at the doorstep. We apply the above
framework to a particular get-out-the-vote #eld experiment
#elded in New Haven ahead of the 1998 general election in New
Haven, CT (Gerber and Green 2000). In the original experi-
ment, N = 23, 450 households were randomly assigned three
factors: a door-to-door canvassing visit (or not), a phone call (or
not), and a mailer sent to their home (or not). Note that door-
to-door canvasing was randomized independently of the other
two factors, so we are performing a conditional analysis when
analyzing as a factorial design, conditioning on the number of
people actually assigned to each treatment combination. All of
the factors involved messages that encouraged voter turnout.
Randomization was done at the household level and the out-
come is whether anyone in the household voted in the 1998
general election. Previous studies have analyzed various aspects
of this experiment, both substantively and methodologically
(Gerber and Green 2000; Imai 2005; Hansen and Bowers 2009;
Blackwell 2017).

Noncompliance in this voter mobilization setting usually
occurs when a resident fails to answer the door for an in-person
canvassing attempt or fails to answer the phone for a phone can-
vassing attempt. The MCAFE for in-person canvassing, then,
would be the e"ect of canvassing among individuals that would
answer their door and talk to a canvasser regardless of whether
or not they would answer a phone call or read a mailer. That is, it
marginalizes or averages over the assignment for the phone and
mailer factors ignoring the actual uptake on those factors. The
PCAFE, on the other hand, would be the e"ect of in-person-
canvassing among those who would answer their door, answer
their phone, and read any mailer sent to them. In this case, by
averaging over the assignment to the other factors, we are also
directly averaging over uptake. While noncompliance on the
mailers factor is theoretically possible, it is di$cult to measure—
we would have to know if a person both received the mailer and
read it closely enough to get the message. Thus, for the purposes
of this application, we assume perfect compliance on the mailers
factor. One advantage of our approach is that all estimands,
estimators, and con#dence intervals are well-de#ned even when
some of the factors have perfect compliance. It also emphasizes
the bene#ts of our MCAFE quantities which can be calculated
on any given factor without knowing compliance information
for other factors. We estimate that the marginal compliance
rates for in-person and phone canvassing is 0.296 and 0.282,
respectively. The perfect compliance rate, on the other hand, is
estimated as just 0.104.

Figure 1 shows the estimated MCAFEs and PCAFEs for
this voter mobilization study with 95% con#dence intervals
using the Fieller method. The main substantive takeaway from
the results is that only in-person canvassing appears to have a
positive and statistically signi#cant e"ect on turnout, at least for

Figure 1. Estimated marginal and perfect complier factorial e!ects of canvassing
methods on voter turnout.

marginal compliers. Other MCAFEs, while sometimes having
large point estimates, all have con#dence intervals that include
0. The e"ects for perfect compliers also all have con#dence
intervals that include zero, and all of these intervals are much
wider than for marginal compliers. This demonstrates the loss
of precision when attempting to make inferences about a smaller
group, even if the resulting coe$cients are more directly compa-
rable. Even with that increase in uncertainty, there are striking
di"erences between the point estimates of the PCAFEs and
MCAFEs, which could also re%ect how the perfect compliers
in this setting might be behavioral outliers. Given that the in-
person canvassing was done during the day, these are people
who are home and willing to talk about political campaigns in
person or over the phone. We may expect these individuals to
have di"erent responses to canvasing attempts than the popula-
tion at large.

In Figure 2, we use the methods of Section 4 to investigate
how these compliance groups and their associated e"ects relate
to background characteristics of the subjects. We have limited
data on the households in this study, but we do have average
age in the household, household size (in terms of number of
registered voters), whether anyone in the house is registered
with the Democratic or Republican party, and whether anyone
in the household voted in the previous election. The le! panel
of Figure 2 uses the approach of Section 4.1 and shows the esti-
mated means of these covariates relative to overall sample, and
it is clear that compliance with any of the factors is associated
with older subjects, more registered voters in the household, and
higher rates of previous turnout. These di"erences appear to be
stronger for the phone compliers and the combined door-to-
door and phone compliers. This helps explain why the PCAFE
and MCAFE point estimates are more disparate for estimating
the e"ect of the door-to-door intervention than for the phone
intervention; the subpopulation for which we are estimating
the MCAFE for the door-to-door intervention is estimated to
be younger, from smaller households, and less likely to have
voted previously than the subpopulation for the corresponding
PCAFE. And, of course, di"erences may also exist between
these groups on other unmeasured covariates. This exempli-
#es the heterogeneity in e"ects we might expect among the
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Figure 2. Comparison of estimated covariate means within compliance groups (left) and the estimated MCAFEs using weights to adjust for covariate di!erences between
the compliance groups (right).

di"erent compliance groups. This result also emphasizes that
the MCAFEs for di"erent e"ects are not directly comparable
because they relate to di"erent subpopulations, so we are esti-
mating not only the e"ect of di"erent interventions but we are
also averaging over di"erent types of individuals. For instance,
the subpopulation corresponding to the MCAFE for the phone
intervention is estimated to be almost 0.25 standard deviations
older on average than the subpopulation corresponding to the
MCAFE for the door-to-door intervention.

As a way to potentially adjust for these covariate di"erences,
we use the weighting approach of Section 4.2. We create a binned
version of age and create strata based on the unique values of
all the covariates, allowing us to estimate the weights nonpara-
metrically by strati#cation. The le! panel of Figure 2 shows
how the weighted MCAFEs compare to the original MCAFEs,
with the con#dence intervals of the weighted MCAFEs obtained
by conditioning on the weights. Small di"erences between the
weighted and unweighted MCAFEs do appear, but the overall
substantive conclusions remain unchanged. This provides some
evidence that these covariates are not enough to explain the
di"erences we observe, for instance, between the MCAFEs and
PCAFEs. We would urge caution in interpreting these weighted
MCAFEs as the generalizability assumption needed to allow for
comparing e"ects may not be plausible in this setting.

6. Conclusion

In this article we have presented a new framework for 2K

factorial experiments with noncompliance on any number of
factors. Under standard instrumental variable assumptions and
a treatment exclusion restriction unique to this setting, we
showed how there are several ways to de#ne compliance and
we exploited this to de#ne two broad classes of factorial e"ects:
those for marginal compliers and those for perfect compliers.
Furthermore, we detailed several ways to estimate and make
inferences about these quantities of interest.

There are several avenues for extending this framework. The
#rst would be to consider how to proceed with the identi#cation
and estimation of bounds for either the overall average factorial

e"ect or various complier factorial e"ects when the assumptions
maintained in this article do not hold. In particular, the treat-
ment exclusion restriction assumption can be restrictive in that
it rules out many types of interactions for compliance. This is
especially limiting because interactions are o!en the target of
inference in factorial experiments. Another way to extend this
setting would be to allow for more than two levels for each
factor given these types of designs are quite common in the
social and biomedical sciences. Finally, there are many situations
where the compliance status is unknown or only known for a
subset of individuals, as in the mailers in the GOTV New Haven
experiment. In these settings, it would be useful to use partial
identi#cation and bounds to understand what can be learned
about the e"ect of treatment uptake.

Supplementary Materials

The supplementary material contain the following: (A) Proofs and technical
notes (B) Alternative estimands and estimators with di"erent weighting (C)
Discussion of a weaker treatment exclusion restriction (D) Discussion of
how to conduct Bayesian inference (E) Simulation results (F) An additional
empirical example.
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